
UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Model Revision of Boolean Logical Models
of Biological Regulatory Networks

João Filipe Rosado Gouveia

Supervisor : Doctor Pedro Tiago Gonçalves Monteiro
Co-Supervisor : Doctor Maria Inês Camarate de Campos Lynce de Faria

Thesis approved in public session to obtain the PhD Degree in
Computer Science and Engineering

Jury final classification: Pass with Distinction

2021

UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Model Revision of Boolean Logical Models
of Biological Regulatory Networks

João Filipe Rosado Gouveia

Supervisor : Doctor Pedro Tiago Gonçalves Monteiro
Co-Supervisor : Doctor Maria Inês Camarate de Campos Lynce de Faria

Thesis approved in public session to obtain the PhD Degree in
Computer Science and Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson : Doctor Joaquim Armando Pires Jorge,
Instituto Superior Técnico, Universidade de Lisboa

Members of the Committee :

Doctor João Alexandre Carvalho Pinheiro Leite,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Doctor Carito Guziolowski,
École Centrale de Nantes, France

Doctor Susana de Almeida Mendes Vinga Martins,
Instituto Superior Técnico, Universidade de Lisboa

Doctor Pedro Tiago Gonçalves Monteiro,
Instituto Superior Técnico, Universidade de Lisboa

Funding Institutions
FCT - Fundação para a Ciência e a Tecnologia

2021

Resumo

Processos celulares complexos podem ser representados por redes regulatórias biológicas.

Modelos computacionais destas redes são essenciais para um melhor entendimento dos processos

biológicos correspondentes, permitindo a reprodução de comportamentos conhecidos, bem como

o teste de hipóteses ou simulação de comportamentos. No entanto, a construção destes modelos

é ainda uma tarefa principalmente manual, e consequentemente proṕıcia a erros. Para além

disso, à medida que nova informação é obtida, os modelos existentes têm de ser revistos.

Neste trabalho propomos um método de revisão de modelos, capaz de determinar conjun-

tos mı́nimos de reparações que tornam um modelo lógico Booleano, de uma rede regulatória

biológica, consistente com um conjunto de dados experimentais. O método de revisão de mod-

elos proposto tira partido de uma abordagem baseada em lógica para verificar se um modelo

é consistente com um conjunto de observações experimentais. Em caso de inconsistência, o

método de verificação de consistência, implementado usando Answer Set Programming (ASP),

determina o número mı́nimo de nós do modelo que são inconsistentes e os respetivos motivos de

inconsistência. É proposto um algoritmo que, em caso de inconsistência, procura por posśıveis

operações de reparação que tornam o modelo consistente. Neste trabalho são consideradas

quatro operações de reparação: mudar uma função de regulação; trocar um tipo de interação;

remover um regulador; e adicionar um regulador. O método de revisão de modelos aqui apre-

sentado considera validar modelos lógicos Booleanos com observações de estados estáveis ou de

sequências de estados. No que respeita a observações de sequências de estados, são considerados

esquemas de atualizações śıncronos e asśıncronos.

O método de revisão de modelos proposto é testado usando cinco modelos biológicos publi-

cados. Foram geradas versões corrompidas destes modelos, aplicando mudanças aleatórias nos

mesmos. Os modelos corrompidos são depois confrontados com observações de estados estáveis,

que correspondem aos estados estáveis dos modelos originais, utilizando o método de revisão de

modelos apresentado. Foram também geradas diferentes observações de sequências de estados,

consistentes com os modelos originais, com o fim de validar se o método de revisão de modelos

é capaz de rever os modelos quando confrontados com este tipo de observações. O método pro-

posto é capaz de reparar a maioria dos modelos corrompidos, considerando tanto observações

de estado estável como de sequência de estados. Mais ainda, são produzidas todas as soluções

ótimas para reparar os modelos inconsistentes.

Palavras-chave: Revisão de Modelos, Modelos Lógicos Booleanos, Redes Regulatórias,

Estados Estáveis, Dinâmica (As)Śıncrona

i

ii

Abstract

Complex cellular processes can be represented by biological regulatory networks. Computa-

tional models of such networks are essential to have a better understanding of the corresponding

cellular processes, allowing the reproduction of known behaviours, the testing of hypotheses,

and the identification of predictions in silico. However, the construction of these models is still

mainly a manual task, and therefore prone to error. Additionally, as new data is acquired, the

existing models must be revised.

Here, we propose a model revision procedure, capable of providing the set of minimal re-

pairs to render a Boolean logical model of a biological regulatory network consistent with a

set of experimental observations. The proposed model revision procedure takes advantage of a

logic-based approach to verify whether a model is consistent with a given set of experimental ob-

servations. In case of inconsistency, the consistency check procedure implemented using Answer

Set Programming (ASP) determines the minimum number of inconsistent nodes of the model

and corresponding reason of inconsistency. An algorithm to search for possible sets of repair

operations to render an inconsistent model consistent is proposed. In this work, four repair oper-

ations are considered: changing a regulatory function; changing a type of interaction; removing

a regulator; and adding a regulator. The model revision approach presented here, considers

confronting a Boolean logical model with stable state or time-series observations. Moreover, for

time-series observations, both synchronous and asynchronous update schemes are considered.

The proposed model revision approach is tested on five published well known biological

models. Corrupted versions of these models are generated by performing random changes. The

corrupted models are confronted with stable state observations, corresponding to the stable

states of the original models, using the presented model revision procedure. Moreover, different

time-series observations are generated, consistent with the original models, to assess whether the

model revision approach is able to revise the corrupted model under time-series observations.

The proposed method is able to repair the majority of the corrupted models, considering stable

state and time-series observations. Moreover, all the optimal solutions to repair the inconsistent

models are produced.

Keywords: Model Revision, Boolean Logical Models, Regulatory Networks, Stable States,

(A)Synchronous Dynamics

iii

iv

Acknowledgments

“It is far, far easier to make a correct

program fast than it is to make a fast

program correct.”

Herb Sutter

First of all, I would like to thank my supervisors, Professor Pedro Monteiro and Professor

Inês Lynce, for all the support and guidance throughout this extraordinary journey. I feel

really blessed for having you as my supervisors. Thank you for being always there, for all the

discussions and ideas, and for your dedication. This fantastic journey would not be possible

without you. Thank you for being such extraordinary and kind human beings. It is always a

pleasure to work with you, and I hope that I have the opportunity to work with you again in

the future.

I would like to thank Professor Susana Vinga and Professor João Leite for all the enlighten-

ment, feedback and suggestions during the thesis proposal.

I would also like to thank Instituto Superior Técnico, and the Department of Computer

Science in particular, for all the support and for making this work possible.

A special thanks to INESC-ID and all who are part of it, for welcoming me and providing

me all the space and conditions to develop this work. In particular, I would like to thank the

SAT group of INESC-ID, for all the support and good moments.

I want to thank Fundação para a Ciência e Tecnologia (FCT) for supporting this work by

awarding me a PhD grant (SFRH/BD/130253/2017).

I would like to thank Professor Pedro Monteiro, Professor Inês Lynce, Professor Vasco Man-

quinho, Professor Francisco Santos, Professor Luis Russo, Professor Alexandre Francisco, Pro-

fessor Ana Paiva, Professor Nuno Mamede, Professor Lúısa Coheur, Sofia Teixeira, Alexandre

Lemos, Pedro Varela, Ana de Jesus, and Vanda Fidalgo, with whom I worked, discussed ideas,

and who positively contributed in some way to the success of my journey in the last years.

I want to thank my friends, in particular Ana, Afonso, Bárbara, Bernardo, Capelo, Carolina,

Fábio, Lúıs, Rita, Rodrigo, Rui, Rute, and Tiago, for all the support, for all the good and funny

moments, for making me happy. You were very important in the last years, and I hope to be

there for you as you have been there for me.

Finally, but not least, I want to thank my family, my huge family, for providing me all that

I needed and more, for all the support, for all the good moments, for all the endless talks, for

all the fun.

Thank you all!

v

vi

Contents

Resumo . i

Abstract . iii

Acknowledgments . v

List of Tables . ix

List of Figures . xi

List of Algorithms . xiii

List of Abbreviations . xv

1 Introduction 1

1.1 Motivation . 2

1.2 Goals . 2

1.3 Thesis Outline . 3

2 Background 5

2.1 Biological Regulatory Networks . 5

2.1.1 Modelling . 6

2.1.2 Dynamics . 13

2.2 Boolean Functions . 16

2.3 Answer Set Programming . 19

3 Related Work 25

3.1 Network and Model Inference . 25

3.2 Model Analysis . 27

3.2.1 Attractors Determination . 27

3.2.2 Reachability Verification . 29

3.2.3 Reduction Techniques . 30

3.3 Model Revision . 31

vii

4 Logic-based Approaches 33

4.1 Consistency of Boolean Logical Models . 33

4.1.1 Boolean Logical Model and Observations 33

4.1.2 Consistency Check . 37

4.2 Boolean Function Relations . 46

5 Model Revision 57

5.1 Model Revision Approach . 57

5.1.1 Validation of Node Consistency . 62

5.1.2 Function Repair Search . 64

5.2 ModRev - Model Revision Tool . 68

6 Experimental Evaluation 71

6.1 Instances . 71

6.2 Results . 74

6.2.1 Stable State Observations . 74

6.2.2 Time-series Observations . 79

6.3 Discussion . 83

7 Conclusions 89

7.1 Contributions . 90

7.2 Discussion and Future Work . 92

Bibliography 97

A Results 109

B Tutorial 121

viii

List of Tables

4.1 Number of monotone and non-degenerate Boolean functions. 54

5.1 Causes of inconsistency and corresponding repair operations. 58

5.2 Combinations of possible repair operations. 59

6.1 Boolean models used for evaluation. 72

6.2 Percentage values of F, E, R, and A parameters, of the 24 corruption configurations. 73

6.3 Results under stable state observations using ASP for function search. 76

6.4 Results under stable state observations using C++ for function search. 77

6.5 Number of solved instances under stable state observations. 79

6.6 Resume of the results under time-series observations. 80

A.1 Results under stable state observations using C++ for function search with 3600

seconds time limit. 110

A.2 Results under synchronous update with 1 observation with 3 time steps 111

A.3 Results under asynchronous update with 1 observation with 3 time steps 112

A.4 Results under synchronous update with 1 observation with 20 time steps 113

A.5 Results under asynchronous update with 1 observation with 20 time steps 114

A.6 Results under synchronous update with 5 observations with 3 time steps 115

A.7 Results under asynchronous update with 5 observations with 3 time steps 116

A.8 Results under synchronous update with 5 observations with 20 time steps 117

A.9 Results under asynchronous update with 5 observations with 20 time steps . . . 118

B.1 Synchronous time-series data . 123

B.2 Incomplete synchronous time-series data . 124

ix

x

List of Figures

2.1 Example of a regulatory graph . 6

2.2 Example of a Boolean logical model . 8

2.3 Example of a generalized logical model interaction. 8

2.4 Node of a Probabilistic Boolean Network. 10

2.5 Example of a Sign Consistency Model. 11

2.6 Example of a synchronous State Transition Graph. 14

2.7 Example of an asynchronous State Transition Graph. 15

2.8 Example of an Hasse diagram. 17

2.9 General process of solving an ASP program. 21

4.2 Consistency check of incomplete time-series observations under synchronous up-

date scheme considering the model in Figure 2.2. 45

5.1 Overview of the model revision process. 58

5.2 Model revision process under synchronous update scheme. 63

5.3 Space of monotone non-degenerate Boolean functions. 65

5.4 Search of monotone non-degenerate Boolean functions. 66

5.5 Near optimal search of monotone non-degenerate Boolean functions. 66

5.6 Space of monotone non-degenerate Boolean functions considering double incon-

sistency. 67

5.7 Search of monotone non-degenerate Boolean functions considering double incon-

sistency. 67

5.8 ModRev tool arquitecture. 68

6.1 Time of solved instances under stable state using ASP for function search. 78

6.2 Time of solved instances under stable state using C++ for function search. . . . 78

6.3 Time of solved instances confronted with time-series data under synchronous update. 81

6.4 Comparison between FY and MCC models confronted with time-series observations. 82

xi

6.5 Median solving times of SP per corruption configuration. 82

A.1 Solving times for FY model under synchronous update scheme. 119

A.2 Solving times for FY model under asynchronous update scheme. 119

A.3 Solving times for SP model under synchronous update scheme. 119

A.4 Solving times for SP model under asynchronous update scheme. 119

A.5 Solving times for TCR model under synchronous update scheme. 120

A.6 Solving times for TCR model under asynchronous update scheme. 120

A.7 Solving times for MCC model under synchronous update scheme. 120

A.8 Solving times for MCC model under asynchronous update scheme. 120

A.9 Solving times for Th model under synchronous update scheme. 120

A.10 Solving times for Th model under asynchronous update scheme. 120

B.1 Example of a Boolean logical model. 121

xii

List of Algorithms

1 Model Revision . 61

2 Repair Node . 62

xiii

xiv

List of Abbreviations

ASP Answer Set Programming.

BCF Blake Canonical Form.

DNF Disjunctive Normal Form.

FY Fission Yeast.

ILP Integer Linear Programming.

MCC Mammalian Cell Cycle.

PKN Prior Knowledge Network.

SCM Sign Consistency Model.

SMT Satisfiability Modulo Theories.

SP Segment Polarity.

STG State Transition Graph.

TCR T-Cell Receptor.

Th T-helper.

xv

xvi

Chapter 1

Introduction

Complex cellular processes can be represented through biological regulatory networks which

describe interactions between biological compounds such as genes and proteins. Having a com-

putational model of such networks is of great interest, allowing the reproduction of known

behaviours, the test of hypotheses, and the identification of predictions in silico, therefore pro-

viding a better understanding of the associated biological processes.

Different formalisms have been used by the community to model biological regulatory net-

works, such as Ordinary Differential Equations (ODE) [1], Piecewise-Linear Differential Equa-

tions (PLDE) [2], Logical Formalism [3], Sign Consistency Model (SCM) [4], among others [2].

In this work, we consider the (Boolean) logical formalism, which has proven useful to study and

analyse dynamical behaviour of biological models [3, 5–7].

The construction of these models is still mainly a manual task, performed by a modeller, and

therefore prone to error. Moreover, the construction of these models rely on experimental data

that is scarcely available, incomplete or inaccurate, leading to inaccurate models. Considering

the Boolean logical formalism, regulatory functions representing how biological compounds in-

teract with each other are defined as Boolean functions. Upon the construction of these models,

given the usually few samples of experimental data available, there may be multiple Boolean

functions that fit the experimental data, but only one is chosen for each compound, which may

not be the most adequate. During the last decades, computational techniques to build net-

works and models from experimental data have been proposed [8–12]. However, due to few

experimental data available, often incomplete or noisy, inaccurate models can still be produced.

Logic-based approaches, such as Answer Set Programming (ASP) [13, 14] and Boolean Sat-

isfiability (SAT) [15], have been successfully used in the context of biological regulatory net-

works [16, 17]. In this work we consider the use of ASP to aid the analysis of Boolean logical

models of biological regulatory networks.

1

1.1 Motivation

As models of regulatory networks are extended or new experimental data is acquired, it

becomes necessary to assess whether the models continue to be consistent with the existing

data, and if necessary, to revise them. Typically, model revision is a manual task, performed

by a domain expert, and therefore prone to error. The process of building such models is also

prone to error, thus accentuating the importance of the model revision process.

There is an inherent combinatorial problem associated to all possible changes that can be

applied to a model to render it consistent. Moreover, there is a combinatorial explosion of the

dynamical behaviour that can be generated by a regulatory model. This makes the model re-

vision process a difficult task, as the model needs to be consistent with all known dynamical

behaviours and properties. One crucial step in the model revision process is the possible redefini-

tion of regulatory functions, a manual process not formally defined, and therefore prone to error.

This calls for automated approaches to build and revise such models, especially when incomplete

information is considered. The notion of belief revision exists for a long time and addresses the

problem of having new information in conflict with previously known information [18]. Even

though model revision has been addressed by the community for models of regulatory networks

[16, 17, 19], few approaches have been proposed for (Boolean) logical models [20, 21].

1.2 Goals

In this work, our goal is to develop a model revision approach for Boolean logical models

of biological regulatory networks. For the model revision approach, we introduce a consistency

check procedure using ASP able to assess whether a model is consistent with a set of experimental

observations. Then, we present an algorithm that is able to produce a set of repair operations

that render an inconsistent model consistent.

When revising Boolean logical models of regulatory networks, our goal is to be able to

confront a model with a set of stable state and time-series observations. Stable state observations

represent important properties of a regulatory network, being stationary states, and time-series

observations allow to represent dynamic behaviour. Regarding time-series observations, our goal

is to be able to consider different update schemes used to generate the dynamic behaviour of a

network. In particular, we consider synchronous and asynchronous update schemes.

As there is a combinatorial problem associated with all the changes that can render an

inconsistent model consistent, we intend to define an optimisation criterion to compute optimal

sets of repair operations. Moreover, we intend to consider the model construction process to

2

define the optimisation criterion, as well as the impact that changing regulatory function of a

model has on its dynamics.

Finally, our goal is to develop a tool able to receive as input a Boolean logical model and a set

of experimental observations and assess whether the model is consistent. In case of inconsistency,

the tool is able to produce all the optimal sets of repair operations that render the model

consistent. This will allow a modeller, or a domain expert, to use the tool to revise a model.

Moreover, as the tool produces all the optimal solutions, the modeller can choose which set of

repair operations to apply to an inconsistent model.

1.3 Thesis Outline

This document presents a model revision approach for Boolean logical models.

In Chapter 2 are presented the essential concepts necessary to understand the context of this

work. Biological regulatory networks are described in Section 2.1 in which different modelling

formalisms are defined. As Boolean functions are a crucial component of Boolean logical models,

concepts and properties of Boolean functions are presented in Section 2.2. In Section 2.3, Answer

Set Programming (ASP) is described.

An overview of the related work is presented in Chapter 3. Section 3.1 presents network and

model inference techniques. Approaches to study and analyse biological models are presented

in Section 3.2. Model revision approaches are introduced in Section 3.3.

Logic-based approaches developed during this work are presented in Chapter 4. A consistency

check procedure is defined in Section 4.1. A logic-based approach to compute neighbours of

monotone non-degenerate Boolean functions is presented in Section 4.2.

The detailed definition of the proposed model revision process is presented in Chapter 5.

The developed model revision tool, ModRev, is introduced in Section 5.2.

An experimental evaluation of the proposed model revision approach is presented in Chapter

6. Section 6.1 defines the tests performed as well as the instances used for the evaluation. The

obtained results are then shown in Section 6.2. A discussion of the results is done in Section 6.3.

This document concludes in Chapter 7 in which the contributions of this work are presented.

A discussion over this work and future work proposal is done in Section 7.2.

Appendix A shows detailed results of the experimental evaluation.

A tutorial of the ModRev tool is presented in Appendix B.

3

4

Chapter 2

Background

In this chapter are introduced the main concepts necessary for this work.

Section 2.1 describes biological regulatory networks and presents the inherent concepts. Sev-

eral formalisms to model such networks are also presented in Section 2.1.

Important properties of Boolean functions that are used in this work are presented in Section

2.2.

This work has an important logic-based component. Therefore, Answer Set Programming

(ASP) is described in detail in Section 2.3.

2.1 Biological Regulatory Networks

A biological regulatory network is a collection of biological compounds, such as proteins,

genes, metabolites, among others. These biological compounds interact with each other or with

other substances in a cell, representing complex biological processes.

Typically, a biological regulatory network is represented by a regulatory graph.

Definition 2.1.1. A regulatory graph is a directed graph G = (V,E), where V = {v1, . . . , vn}

is the set of nodes, and E ⊆ {(u, v, s) : u, v ∈ V, s ∈ {+,−}} is the set of signed edges.

The nodes, or vertices, of a regulatory graph represent biological compounds, and the edges

represent interactions between compounds. An edge (u, v,+) represents a positive interaction,

or activation, meaning that u activates v. An edge (u, v,−) represents a negative interaction,

or inhibition, meaning that u inhibits v. In either case, u is said to be a regulator of v. Figure

2.1 illustrates an example of a regulatory graph, where positive interactions are represented by

green pointed arrows, and negative interactions are represented by red blunt arrows.

Biological networks shed some light on the corresponding complex biological processes, indi-

cating the interactions between biological compounds. Although biological networks are able to

5

v1 v2

v3 v4

Figure 2.1: Example of a regulatory graph

represent the interaction between compounds, the information regarding how exactly the com-

pounds influence with each other is not represented. Thus, this raises the necessity of having

biological models capable of representing how biological compounds interact with each other.

Modelling biological networks is particularly useful to be able to computationally reproduce

existing observations, test hypotheses, and identify predictions in silico. Computational mod-

elling of regulatory networks constitutes a crucial step towards the functional understanding of

the resulting intertwined networks.

Different formalisms have been used by the community to model biological regulatory net-

works. These models can be roughly classified as quantitative or qualitative models. Quan-

titative models are typically built using differential equations, requiring specific mathematical

skills and a lot of detailed quantitative experimental data collected over time. However, for

some biological processes, such detailed quantitative data is not available. Simpler models are

necessary to overcome the lack of information: qualitative models. Qualitative models consider

a discrete number, typically small (mostly Boolean), of possible states for each component, e.g.

active / inactive.

In this work we will focus on qualitative models, in particular the (Boolean) logical models [3],

described in the following Section 2.1.1.

2.1.1 Modelling

Having a computational model, representing biological regulatory networks, allows to have

a better understanding of the corresponding complex biological process.

Quantitative models, usually based on differential equations, required a lot of (often unavail-

able) detailed quantitative data. Such models use real variables to represent the concentration of

each biological compound, and equations to define the changes of the concentration values over

time. Some of the quantitative models used are Bayesian Networks [22], Ordinary Differential

Equations (ODEs) [1], Partial Differential Equations [2], Piecewise Linear Differential Equations

(PLDEs) [2] and Stochastic Master Equation [23].

Qualitative models have proven to be well adapted for the modelling of systems where quan-

6

titative information is generally incomplete or noisy. Typically, network compounds only affect

other compounds above (or below) some concentration threshold. With this in mind, it is pos-

sible to consider discrete variables to model regulatory networks, representing different levels of

concentration.

In the following, some of the qualitative formalisms used to model biological regulatory

networks are described in detail.

Logical Modelling

A simple way to define the state of a compound of a biological network is to consider a

Boolean variable, rather than a real number used to define quantity in quantitative models. A

Boolean variable can either be True (1, on, active) or False (0, off, inactive). If a concentration

threshold is defined for a biological compound in a regulatory network, then that compound

can be represented by a Boolean variable with value True if its concentration is above such

threshold, and with value False otherwise.

The use of logical models to represent biological regulatory networks was introduced by

Kauffman [24] in 1969, and by Thomas [3] in 1973.

In order to have a complete model, it is necessary to define how biological compounds interact

with each other. For example, considering Figure 2.1, we know that both v1 and v2 activate

v3, and v4 inhibits v3, but we lack information regarding how exactly do v1, v2 and v4 affect

v3. For v3 to become active it may require v1 AND v2 to be active. Another possibility is to

just require one of v1 OR v2 to activate v3. Therefore, in order to have a model of a biological

network, regulatory functions are required. In a logical model, regulatory functions are defined

as Boolean functions.

Definition 2.1.2. Let B be the set {0, 1} and Bn be the n-dimensional Cartesian product of

the set B. A Boolean function f is then defined as f : Bn → B.

Definition 2.1.3. A (Boolean) logical model M of a regulatory network is defined by a tuple

(V,F), where V = {v1, v2, . . . , vn} is the set of n variables representing the regulatory compounds

of the network, where to each vi is assigned a Boolean value in {0, 1}, and F = {f1, f2, . . . , fn}

is the set of n Boolean functions, where each fi define the value of vi.

Remark 2.1.1. Considering a biological compound with k regulators, there are 22
k

different

Boolean functions that can be defined as regulatory function.

Figure 2.2 illustrates an example of a logical model, where the regulatory functions of each

node are represented on the right side. Note that it would suffice to provide the set of regulatory

7

v1 v2

v3 v4

fv1 = v2

fv2 = ¬v1 ∧ v4

fv3 = v1 ∨ (v2 ∧ ¬v4)

Figure 2.2: Example of a Boolean logical model

functions without the regulatory graph to define the logical model, since all the information

regarding nodes and interactions can be inferred from the Boolean functions. Node v4 does not

have a regulatory function as it does not have any regulator. In this case, we denote v4 as an

input node.

Definition 2.1.4. An input node is a node whose regulatory function is not applied, typically

representing an external stimuli. Its value does not change over time. Nodes without regulators

or regulatory function are considered input nodes.

Figure 2.2 presents an example of a representation of a logical model. However, logical

models can have different representations. It is possible to represent logical models as a logical

circuit using logical gates to represent the Boolean functions. Figure 2.2 uses logical formulas

to represent Boolean functions. However, a Boolean function can be represented by different

logical formulas. For example fv3 could also be represented as fv3 = (v1 ∨ v2)∧¬(¬v1 ∧ v2 ∧ v4).

Generalised Logical Modelling

The (Boolean) logical model can be generalised by allowing the variables to have more than

two values. Discrete variables can be used to define different levels of concentration, according

to some threshold values.

Consider, for example, Figure 2.3, where node a affects node b above a threshold θ1, and a

affects c above a second threshold θ2 > θ1. We can then define three possible values for node a:

• 0: concentration level bellow θ1

a

b c

θ1 θ2

Figure 2.3: Example of a generalized logical model interaction.

8

• 1: concentration level between θ1 and θ2

• 2: concentration level above θ2

With this in mind, we can generalise a logical model as follows:

Definition 2.1.5. A logical model M of a regulatory network is defined by a tuple (V,F),

where V = {v1, v2, . . . , vn} is the set of n variables representing the regulatory compounds of the

network, where to each vi is assigned a non-negative integer value in {0, . . . ,maxi}, representing

the compound concentration level, where maxi is the maximum value possible for variable vi.

F = {f1, f2, . . . , fn} is the set of n regulatory functions, where each fi define the value of vi.

Remark 2.1.2. Given a model M = (V,F), if ∀vi maxi = 1, then all variables are Boolean

variables and we are in the presence of a Boolean logical model.

Probabilistic Boolean Networks

In (Boolean) logical modelling, each compound regulated by k other compounds have 22
k

possible regulatory Boolean functions. In some cases, experimental data is insufficient or there is

incomplete knowledge to define such regulatory functions, where several candidates are possible.

The logical modelling was extended in order to account for the uncertainty of the regulatory

functions [1, 25, 26].

In a Probabilistic Boolean Network (PBN), a compound can have several regulatory func-

tions, each with an associated probability. These probabilities are determined based on the

available data, such that it is compatible with the prior knowledge of the network.

Definition 2.1.6. A Probabilistic Boolean Network model M is defined by a set (V), where

V = {v1, v2, . . . , vn} is the set of n variables representing the regulatory compounds of the

network, where to each vi is assigned a Boolean value in {0, 1}. To each vi is assigned a set

Fi = {f (i)1 , f
(i)
2 , . . . , f

(i)
l } of Boolean functions that can define the value of vi. Each function f

(i)
j

is associated with a probability c
(i)
j of being chosen to determine the value of vi.

Remark 2.1.3. Given a PBN model M, let l(i) be the number of Boolean functions assigned

to variable vi of model M. If l(i) = 1 for all i = 1, . . . , n, where n is size of the network, then

the PBN model reduces to a Boolean logical model.

During simulation, at each time step, for each compound, a regulatory function is randomly

selected according to the corresponding probabilities, in order to determine the next state of

that compound. Figure 2.4 [26] illustrates a node xi of a PBN, associated with a set of functions

9

Fi = {f (i)1 , f
(i)
2 , . . . , f

(i)
l(i)} and corresponding probabilistic values c

(i)
1 , c

(i)
2 , . . . , c

(i)
l(i), where only

one function is chosen to predict the next state of node xi.

Note that PBN are stochastic models, where the state of a compound not only depends

on the state of the regulatory compounds, but also on a probabilistic factor that defines the

regulatory function.

Figure 2.4: Node of a Probabilistic Boolean Network with a set of associated regulatory functions
where only one is chosen to predict the next value of the node [26].

Sign Consistency Model

Siegel et al. [4] proposed the Sign Consistency Model (SCM) formalism. In this approach, it

is only considered the difference in the expression levels between two situations. The expression

level of a compound can increase, decrease or not change significantly.

A directed graph is built from the biological information, where each node represents a

biological compound, such as mRNA, proteins or metabolites. The edges of the graph represent

interactions between compounds and can be labelled “+” or “−”. An edge with label “+”

(“−”) from a to b means that an increase of the concentration of a increases (decreases) the

concentration of b. This model can contain information on indirect interactions. If one observes

that a variation of the concentration of a affects the concentration of b, then an edge from a to

b can be added to the model, even if the underlying mechanism of the network is not known.

In the SCM, each node of the model can assume values in {0,+,−}, where “0” means that

the expression level does not change significantly, “−” means that the expression level decreases,

and “+” represents an increase of the expression level. As we only know the variation sign of

each compound and the interaction sign, to find relations between the signs of the variations

10

a

[+]

b

[+]

c

d

+

-

+

-

-

Figure 2.5: Example of a Sign Consistency Model. Observed nodes a and b are labeled with the
corresponding observation.

and the signs of the interactions, the following sign algebra must be considered [4]:

{+}+ {−} =?,

{+}+ {+} = {+},

{+}+ {0} = {+},

{−}+ {−} = {−},

{−}+ {0} = {−},

{+} × {−} = {−},

{+} × {+} = {+},

{−} × {−} = {+},

{+} × {0} = {0},

{−} × {0} = {0},

where ? = {0,+,−}.

Although we describe the model as presented by Siegel et al. [4], there are approaches

that consider an extended version, considering that each node can only have values in {+,−},

representing that an expression level tends to increase (+) or decrease (−). A simpler sign algebra

than the one presented here is considered in the extended version of the SCM [16, 17, 27].

Figure 2.5 illustrates an example of a Sign Consistency Model of a network. Nodes a and b

are observed nodes, where an increase of concentration was observed.

A set of equations can be defined from a network to represent the interactions. Considering

11

Figure 2.5 we can define the following equations for that network:

a = −c

b = a

c = −b

d = −a+ b

(2.1)

A compatible valuation of the qualitative system satisfies the following:

• All nodes are determined, i.e., have an attributed value of “+” (increased) or “−” (de-

creased) or “0” (did not change).

• All the observed nodes are given the observed values.

• The equations of the interactions are satisfied.

Considering the sign algebra, there can be equations with an unknown result. For example,

considering Figure 2.5, the corresponding observation values, and the equations in (2.1), we

obtain:

a = +

b = +

d = −a+ b⇔

⇔d = −(+) + (+)⇔

⇔d = (−) + (+) =?

This indetermination is called competition. The biological interpretation is that node d is

submitted to competitive actions of different signs. If the variation of the node with competition

is zero, the competition is neutral. If the variation is positive (negative), one say that the

positive (negative) path wins the competition or that the competition leans towards the positive

(negative) direction.

Therefore, for each node with value in {+,−}, we can say that it is sign consistent if it receives

at least one influence with the corresponding sign. If there is no competition, all the influences

justify the value of the node (e.g. the node receives only positive influences and therefore its

value is positive). If there is competition, we can say that the path with the corresponding sign

won the competition (e.g. in the previous example if d has value “−” we can say that it is

justified by the negative path from a).

12

Others

There are other models to represent biological networks such as Automata Networks [28, 29]

and Most Permissive Boolean Networks [30]. Automata Networks subsumes Boolean and multi-

valued networks and are defined by a finite set of finite state machines having transitions between

their local states conditioned by the state of other automata in the network [28].

Most recently, Paulevé et al. [30] introduced the Most Permissive Boolean Networks (MPBNs)

paradigm, which reduces the complexity of dynamical analysis. In this paradigm, it is considered

that a compound can exist in four states: inactive, increasing, decreasing, or active. MPBNs

guarantee not to miss any behaviour achievable by a quantitative model following the same logic.

2.1.2 Dynamics

Biological processes evolve through time, changing the state of its compounds. Computa-

tional models of biological regulatory networks are particularly useful to analyse and simulate

such changes. To simulate these behaviours, it is necessary to consider the model dynamics. The

state of a network can change over time by applying the regulatory functions associated with

each compound, updating its corresponding value. In a qualitative (non-hybrid) formalism, this

can be done assuming discrete time-steps.

Definition 2.1.7. A state of a network with n biological compounds is a vector S = [v1, v2, . . . , vn],

where vi represents the value of the variable associated with the i-th compound of the network.

Remark 2.1.4. Considering a (Boolean) logical model, the space of possible states is S =

{0, 1}n. There are 2n different states.

The generated dynamic of a network can be represented as a State Transition Graph (STG).

Definition 2.1.8. A State Transition Graph (STG) is a directed graph GST G = (S, T), where S

is the set of vertices representing the states of the network, and T is the set of edges representing

possible state transitions between states.

The dynamic behaviour of a biological process can be generated through a computational

model considering different update schemes. The most commonly used are the synchronous, and

asynchronous update schemes. In the synchronous update scheme, all the regulatory functions

are applied simultaneously, updating the value of the corresponding variable representing a bi-

ological compound. Considering the model in Figure 2.2 and represented regulatory functions,

and considering that the state of the network is represented by the value of each node in as-

cending order of index (S[v1, v2, v3, v4]), the resulting STG under a synchronous update scheme

13

0000 1000

0010 1010

0100 1100

0110 1110

0001 1001

0011 1011

0101 1101

0111 1111

Figure 2.6: Example of a State Transition Graph for a Logical Model with four nodes, considering
a synchronous update scheme. Vertices represent states of the model and arrows represent
possible state transitions.

is illustrated in Figure 2.6. Note that in the synchronous update scheme, since all regulatory

functions are applied simultaneously, there is exactly one state transition from each state.

Biological processes occur in nature in a non-synchronous way, where changes occur at

variable speeds and rarely simultaneously. Although generating computational dynamics using a

synchronous update scheme allows to study and analyse some properties of a biological regulatory

network, using an asynchronous update scheme is arguably more realistic. In an asynchronous

update scheme, it is assumed that all the changes and interactions occur at different times, and

therefore only one regulatory function can be applied at each time-step. Note that, contrary

to the synchronous update scheme, it is possible to have multiple transitions from any state.

In fact, in a network with n compounds, a state can have up to n different transitions to

different states. The combinatorial explosion of possible dynamic behaviours, particularly when

considering asynchronous update scheme, makes the task of analyse and study the network

dynamic behaviour and properties a challenging task. Considering again the Boolean logical

model in Figure 2.2, and an asynchronous update scheme, the generated STG is represented in

Figure 2.7.

An important property of the network dynamic is the existence of attractors, which denote

meaningful biological properties. An attractor is a set of states of the STG such that: from

each state belonging to the attractor it is possible to reach any state of that attractor through

one or more state transitions; and there is no state transition from any state of the attractor to

any other state outside the attractor. An attractor that contains only one state is called a point

attractor or stable state and correspond to an equilibrium state of the network. Otherwise, an

attractor is denoted as a complex or cyclic attractor, representing changes between the states of

the network that repeat in a cycle or loop.

14

0000 1000

0010 1010

0100 1100

0110 1110

0001 1001

0011 1011

0101 1101

0111 1111

Figure 2.7: Example of a State Transition Graph for a Logical Model with four nodes, considering
an asynchronous update scheme. Vertices represent states of the model and arrows represent
possible state transitions.

In Figure 2.6 it is represented in green the stable state {{0000}}, to which the network

converges when v4 is absent (has value 0), and from which is not possible to transition to any

other state. When v4 is present (has value 1), the network converges to the cyclic attractor

{{0101}, {1101}, {1011}, {0011}}, represented in orange. Note that the states of the cyclic at-

tractor repeat in a loop, not existing any transition to any state outside the attractor, and from

any state of the attractor it is possible to reach any other state of that same attractor.

Determining the attractors of a network, specially considering asynchronous update scheme,

can be a difficult task due to the combinatorial explosion of possible dynamic behaviours. A

more loose concept of attractors is sometimes considered: trap spaces. A trap space is a set

of states from which there is no state transition to any other state outside the trap space [31].

A trap space is not exactly an attractor since a state of the trap space may not be reachable

from other states of the same trap space. However, trap spaces can be exploited to investigate

attractor properties as well as model reduction techniques, and therefore are of great interest.

Definition 2.1.9. Let S be the set of all possible network states and T be the set of state

transitions. A trap space TS is defined as TS ⊆ S : TS 6= ∅, @(u, v) ∈ T : u ∈ TS, v /∈ TS.

Definition 2.1.10. An attractor is a minimal trap space. A ⊆ S is an attractor if it is a trap

space and ∀s∈AA \ {s} is not a trap space.

Remark 2.1.5. Any trap space contains at least one attractor.

Remark 2.1.6. An attractor corresponds to a terminal Strongly Connected Component (SCC)

in a STG.

15

2.2 Boolean Functions

In this work we will consider the Boolean logical formalism to model biological regulatory

networks as described in Section 2.1.1. These (Boolean) logical models have regulatory functions

defined as Boolean functions (see definition 2.1.2). In order to have a better understanding of

the impact of these regulatory functions in a model, some of the properties of Boolean functions

are going to be taken into account.

A Boolean function can be represented in Disjunctive Normal Form (DNF) as a disjunction

(OR, ∨) of terms, where each term is a conjunction (AND, ∧) of literals and each literal is a

variable or its negation (NOT, ¬) [15]. However, a Boolean function can have multiple equivalent

DNF representations. To uniquely represent a Boolean Function, the Blake Canonical Form

(BCF) can be used [32]. The BCF is a special case of DNF where a Boolean function is

represented by the disjunction of all its prime implicants. An implicant of a Boolean function f

is an elementary conjunction C over the variables of f such that if C = 1 implies f = 1, and is

called prime if it is not absorbed by any other implicant (for details, see Crama and Hammer

[33]). As a Boolean function is uniquely identified by the list of its prime implicants, any given

Boolean function has a unique BCF representation. From now on we will consider that any

Boolean function is represented in BCF.

In this work, we restrict the domain of the Boolean regulatory functions to the set of mono-

tone non-degenerate Boolean functions. In the context of biological networks, in a monotone

regulatory function each regulator only has one role: either activator, or inhibitor, but not both

simultaneously. In a non-degenerate Boolean function only its regulators are present as vari-

ables of the function. If a given variable does not affect in any way the output of the regulatory

function, then the variable should not be considered a regulator.

Let B be the set {0, 1} and Bn be the n-dimensional Cartesian product of the set B. Given

X = (x1, . . . , xn) ∈ Bn, with 1 ≤ i ≤ n, a Boolean function f : Bn → B is positive (resp.

negative) in xi if f |xi=0 ≤ f |xi=1 (resp. xi if f |xi=0 ≥ f |xi=1), where f |xi=0 (resp. f |xi=1) denotes

the value of function f(x1, . . . , xi−1, 0, xi+1, . . . , xn) (resp. f(x1, . . . , xi−1, 1, xi+1, . . . , xn)). A

given function f is monotone if it is either positive or negative for every xi [33]. In the BCF

representation of a monotone Boolean function, each variable xi always appears either as a

positive (xi) or as a negative (¬xi) literal. A function f is non-degenerate if all of its variables

are essential. A variable xi is essential in f if f |xi=0(X) 6= f |xi=1(X) for some X ∈ Bn−1, and

is inessential otherwise [34, 35].

Let f and f ′ be two monotone non-degenerate Boolean functions in Bn → B, X = (x1, . . . , xn) ∈

16

(v1 ∧ v2) ∨ (v1 ∧ ¬v4) ∨ (v2 ∧ ¬v4)

(v1) ∨ (v2 ∧ ¬v4) (v2) ∨ (v1 ∧ ¬v4) (¬v4) ∨ (v1 ∧ v2)

(v1 ∧ v2) ∨ (v2 ∧ ¬v4) (v2 ∧ ¬v4) ∨ (v1 ∧ ¬v4) (v1 ∧ ¬v4) ∨ (v1 ∧ v2)

(v1) ∨ (v2) ∨ (¬v4)

(v1 ∧ v2 ∧ ¬v4)

more generic

more specific

Level

(2,2,2)

(2,1)

(1,1,1)

(1,1)

(0)

Figure 2.8: Hasse diagram for monotone non-degenerate Boolean functions of three arguments
(regulators v1, v2, and ¬v4). On the right side is represented the level of the functions.

Bn, with the relation � being defined as:

f � f ′ ⇐⇒ f(X) = 1⇒ f ′(X) = 1. (2.2)

A partial order set can be defined over the set of all monotone non-degenerate Boolean functions

in Bn → B with the relation � [33, 34], and can be represented by an Hasse diagram. Moreover,

given two functions f and f ′, f ′ is a parent of f if and only if f � f ′ and @f ′′ such that f � f ′′

and f ′′ � f ′. In this case f is said to be a child of f ′. Two functions are said to be comparable

if one is an ancestor of the other, i.e. if there is a sequence of parents connecting the two.

Figure 2.8 illustrates an Hasse diagram over the set of monotone non-degenerate Boolean

functions with three variables (v1, v2, and ¬v4). Each node of the diagram represents a Boolean

function in BCF, and each connection represents a parent-child relation. The function repre-

sented in the top of the diagram is the most generic function, which truth table contains only

one entry that evaluates 0. Analogously, the function represented in the bottom of the diagram

is the most specific function, which truth table contains only one entry that evaluates 1.

In [34] a set of rules is proposed to compute the parents/children of a given function monotone

non-degenarate Boolean f without the need to compute the whole function space.

Let a monotone Boolean function f be represented by a set S where each element represents

a term of the BCF representation of the function. Each element of S is a set of variables that

are present in the corresponding term. For example, function f = (v1 ∧ v2) ∨ (v2 ∧ v4) can be

represented by S = {{v1, v2}, {v2, v4}}. Let T be the set of all possible non-empty terms with n

variables. Note that |T | = 2n − 1.

17

Given a function S, a parent S′ can be obtained by applying one of the following rules [34]:

1. S′ = S ∪ {c}, with c ∈ maxσ∈T (|σ| : ∀s∈S , σ 6⊂ s ∧ σ 6⊃ s);

2. S′ = min(S′′ ∪ {σ}), with S′′ (S and σ ∈ T such that:

(a) ∃σ′ ∈ S : σ ⊂ σ′;

(b) @σ′ ∈ T and σ′′ ∈ S such that σ (σ′ (σ′′;

(c) ∀c satisfying rule 1, σ * c;

(d) S′ contains all variables;

3. S′ = min(S′′ ∪ {σ} ∪ {σ′}), with S′′ (S and σ, σ′ ∈ T such that:

(a) σ and σ′ satisfy all the conditions of rule 2 but condition (c);

(b) S′ contains all variables.

Given a function S, a child S′ can be obtained by applying one of the following rules [34]:

1. S′ = S\{c} with c such that @σ : ∀s∈S\{c}, σ 6⊂ s ∧ σ 6⊃ s such that c ⊂ σ;

2. S′ = (S\{c}) ∪ C, for any c and C such that:

(a) C = minσ∈T ({|σ| : foralls∈S\{c}, σ 6⊂ s ∧ σ 6⊃ s and σ ⊃ c});

3. S′ = (S\{c, c′}) ∪ {c ∪ c′} for c,c′ not satisfying rules 1 or 2 and such that c ∩ c′ 6= ∅.

Considering the BCF representation of monotone non-degenerate Boolean functions, the

notion of level of a function can be defined to establish a relation between functions allowing

a comparison between functions that are not descendants or ancestors of each other [34]. The

level of a function f , represented by l(f), can be defined as an ordered m-tuple, where m is the

number of terms in the BCF representation of the function f , and each element of the m-tuple

represents the number of variables missing in the corresponding term, assuming the terms are

in non-decreasing order on the size of each term. For example, the level of the Boolean function

f = (v1)∨(v2∧v3), having three variables (v1, v2, and v3), is l(f) = (2, 1). Note that the function

f has two terms, and its level is represented by an non-increasing ordered 2-tuple. Figure 2.8

shows the levels of the represented functions on the right side.

A total order relation ≤ can be defined between levels of monotone non-degenerate Boolean

functions of the same dimension. Given two functions f and f ′ and the corresponding levels

represented by l(f) = (l1, . . . , lm) and l(f ′) = (l′1, . . . , l
′
m′), l(f) ≤ l(f ′) if and only if one of the

following conditions holds:

18

• exists k ∈ {1, . . . ,min(m,m′)} such that lk < l′k, or

• lk = l′k for all k ∈ {1, . . . ,min(m,m′)} and m ≤ m′.

2.3 Answer Set Programming

ASP [13, 14, 36–38] is a declarative problem solving approach for combinatorial satisfaction

problems. ASP is known to be efficient for enumerating solutions of NP problems while providing

a user-friendly language to encode the problem [39].

ASP is based on the stable model (or answer set) semantics of logic programming [40]. An

ASP program Π is a logic program defined as a set of rules. A rule r is defined as:

a0 ← a1, . . . , an, not an+1, . . . , not am.

where ai is a (variable-free) literal and not ai is the negation of ai. A (positive) literal is a

predicate in first order logic and is also called an atom. The left part of the rule (left of ←) is

called the head of the rule, and the right part of the rule (right of ←) is called the body of the

rule.

The body of the rule r is true if all a1, . . . , an are true and none of an+1, . . . , am can be

proven to be true. Note that it is considered negation by omission, which means that an atom

is considered to be false if it cannot be proven true. If the body of the rule is true, then the

head of the rule (a0) must also be true. Informally we can read the symbol “←” as “if”, which

means that a0 is true if the body of the rule is true.

Whenever a0 is false (⊥), the rule has no head and is called an integrity constraint:

← a1, . . . , an, not an+1, . . . , not am.

An integrity constraint means that the body of the rule must never be true in order for the rule

to be satisfied.

We can also have a rule without a body, which means that the head of the rule is always

true (a0 ← >). Such rules are called facts and can be represented by dropping the symbol “←”:

a0.

An ASP program can have multiple answer sets (or stable models). Informally, an answer

set of a logic program is a minimal set of (positive) literals that satisfies all the rules of the

program, and each (positive) literal can be proven either by a fact or by a body of a rule in

19

which that literal appears in the head of the rule. Consider, for example, the following program:

p← q.

q ← not r.

This program has one answer set that is {q, p}. Considering negation by omission, it is not

possible to justify r as true, and therefore r is assumed false. From the second rule of the

program, as r is false, the body of the rule is true and q must be true and, therefore, present

in the answer set. Then, similarly, from the first rule, p must be true as the body of the rule is

true.

More formally, Gelfond and Lifschitz [40] defined a stable model as follows:

Definition 2.3.1. Let Π be a logic program. For any set M of atoms from Π, let ΠM be the

program obtained from Π by deleting

1. Each rule that has a negative literal not B in its body with B ∈M , and

2. All negative literals in the bodies of the remaining rules.

Clearly, ΠM is negation-free, so that ΠM has a unique minimal Herbrand model. If this model

coincides with M , then we say that M is a stable model of Π [40].

ASP allows the use of variables (starting with an upper-case letter). This allows the user

to define a logic program in a higher level of abstraction, defining literals recurring to variables

and defining domains for the variables. Consider for example the following program:

p(a, b).

q(X)← p(X,Y).

This program has the answer set {p(a, b), q(a)}. The third rule considers that any first argument

of a (true) predicate p is a true assignment for predicate q.

To solve an ASP program, i.e., to compute the answer sets, it is necessary obtain a variable-

free logic program. To this end, a grounder is used to replace the variables in the rules with

all possible instantiations. Considering the previous example, a grounder would produce the

20

following program:

p(a, b).

q(a)← p(a, b).

q(a)← p(a, a).

q(b)← p(b, a).

q(b)← p(b, b).

The general process of solving an ASP program is to give a logic program as input to a

grounder, then the grounder produces the corresponding variable-free program which is given as

input to an ASP solver, which, in turn, produces the answer sets of the program, as illustrated

in Figure 2.9.

Logic

Program Grounder Variable-free

Program
Solver

Answer

Set

Figure 2.9: General process of solving an ASP program.

In this work we consider clingo (version 5.4.0) [41, 42] as the ASP system to ground and

solve logic programs. Clingo uses gringo [43] as a grounder and clasp [13] as a solver.

Clingo supports several aggregate directives, such as #count and #sum, allowing the def-

inition of more expressive rules. These directives are used to define conditions over a group of

variables, and have the following general form:

s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

where Li is a literal and ti is the corresponding value associated, α is the aggregate directive,

≺1 and ≺2 are comparison operations (≤ by default), and s1 and s2 are the lower and upper

bound, respectively. The lower and upper bounds can be omitted. As an example of the use of

the #sum directive, consider the following program:

p(1).

p(2).

q ← #sum{X : p(X)} <= 5.

This program has the answer set {p(1), p(2), q}, since the sum of the arguments of the predicate

21

p is 3 ≤ 5, q must be true. However, if in the last rule, the upper bound is changed from 5 to 2,

the body of the last rule fails and q cannot be explained, thus the answer set of the program will

not contain q. Another interesting use of this directive is illustrated in the following program:

p(1).

p(2).

q(S)← S = #sum{X : p(X)}.

The answer set of this program is {p(1), p(2), q(3)} where the #sum directive is used to define

the argument of predicate q.

The use of choice rules is also supported to simulate disjunctions. Choice constructs are

elements of the form:

s1{L1; . . . ;Ln}s2

that represents a disjunction of literals, where Li are literals, and s1 and s2 are lower and upper

bounds (and can be omitted). As an example, consider the following program:

p.

1{q; r}2← p.

The last rule of this program is called a choice rule. Since the body of that rule is true, the head

must also be true. For the choice construct element 1{q; r}2 to be true, at least one literal and

at most two literals must be true, according to the bounds defined. Therefore, the program has

three answer sets: {p, q}, {p, r}, and {p, q, r}.

Clingo supports the use of optimisation statements (#minize and #maximize) to compute

optimal answer sets. An answer set is optimal if the obtained cost is minimal (or maximal) among

all answer sets, according to the optimisation statement defined. The optimisation statement is

of the form:

#minimize{w1@p1, t1 : L1, . . . , wn@pn, tn : Ln}.

where wi represents the weight associated with value ti of the literal Li with a priority pi (that

can be omitted). The optimisation statement considers the sum of all the weights. As an

22

example, consider the following program:

1{hotel(a);hotel(b);hotel(c)}1.

cost(a, 80). star(a, 3).

cost(b, 80). star(a, 4).

cost(c, 90). star(a, 5).

#minimize{C@2, H : hotel(H), cost(H,C)}.

#maximize{S@1, H : hotel(H), star(H,S)}.

In this program, there are three hotels defined, and we want to choose only one, as indicated

by the first rule. Each hotel has a cost and a star associated. The #minimize statement has

the higher priority value (2), and indicates that we desire to minimise the cost C associated

with the hotel. The #maximize statement, with a lower priority (1), states that we want to

maximise the star value S of the hotel. The program has three answer sets, associated with each

of the hotels, however there is only one optimal answer set. The hotels with the lowest cost are

a and b and only these will be considered according to the first optimisation statement. Then,

we want to maximise the star value, and in this case, between hotels a and b, hotel b is the one

with the highest star value (4). Thus, the (only) optimal answer set for this program is the one

containing hotel b as the chosen hotel.

For more detailed information regarding supported directives, such as aggregate and opti-

misation directives, consult the clingo’s user guide1.

1https://potassco.org/clingo/

23

https://potassco.org/clingo/

24

Chapter 3

Related Work

There are many problems and areas of interest related to biological regulatory networks.

From model construction, to model analysis and revision, several approaches have been presented

in the past years [44, 45].

Tools in systems biology to address some of these problems, and facilitate the work of

biologists, have also been developed. Some of these tools are GINsim [46], MaBoSS [47, 48],

BiNoM [49, 50], BoolNet [51], CellNOpt [52], EpiLog [53], among others [45].

In this section we describe some of the existing approaches and applications regarding bi-

ological models, from the inference of a model, to identification and verification of network

properties, to the model revision process.

3.1 Network and Model Inference

Computational models of biological regulatory networks allow the study, reason over, and

having a better understanding of the corresponding complex biological processes. Therefore,

the construction of models, able to correctly represent biological processes, is a task of great

importance.

In order to build a biological model, experimental data must be processed and analysed.

However, usually few samples of experimental data are available, and it may be incomplete and

inaccurate data, making the model inference a difficult task.

The model inference process depends on the type of model desired (see Section 2.1.1 for more

details on different models). In this work we are focused on qualitative models.

To infer a logical model is necessary to not only infer the network, i.e. the interactions

between compounds, but also the regulatory functions associated with each compound. The

process of network inference aims to determine the regulatory graph (see Definition 2.1.1) from

25

a set of experimental observations and information available in literature.

Statistical learning techniques are commonly used in regulatory networks inference, such as

mutual information [54–61], regression methods [62, 63], support vector machines [63], expectation-

maximisation algorithms [63, 64], and Bayesian networks [8, 22, 65–67].

Having a regulatory graph, indicating the interactions and corresponding type between com-

pounds, gives some information that can be useful. However, it is necessary to also know how

exactly does each interaction affect each compound, i.e. what is the regulatory function of each

compound. For example, a regulatory graph can indicate that compound A activates C, and

that B also activates C. But how is C activated? C can be activated when both A and B are

active (logical AND), or C can be activated when either of A or B is active (logical OR).

Some formalism and approaches assume a fixed regulatory function for every compound. In

the SCM the regulatory function of each compound is based on the sign algebra [4]. Another

regulatory rules that are commonly used take into account the number of activators versus the

number of inhibitors. If a compound receives more active activations than active inhibitions,

then it becomes active; if a compound receives more active inhibitions than active activations,

then it becomes inactive; otherwise, if a compound receives the same number of active activations

and active inhibitions, then it maintains the previous state [68, 69]. These type of regulatory

functions may be useful depending on the type of model, information that it is available, or the

type of analysis that is necessary to perform.

However, more expressive regulatory functions are usually necessary to accurately model a

biological regulatory process. The process of inferring, from experimental data, the regulatory

functions associated with each compound is not an easy task. We have to take into account that,

considering Boolean logical models, there are 22
k

different Boolean functions with k regulators.

Some approaches have been proposed over the years to infer logical models using differ-

ent techniques. Most approaches use a previously defined regulatory graph, commonly called

Prior Knowledge Network (PKN), and a set experimental data, in order to infer the regulatory

functions of each compound. The inferred model must be compatible with the given PKN and

consistent with the available data. However, the construction of such models from experimental

data and a PKN often leads to several candidates, requiring some choices which can lead to

biased predictions and inaccurate models [39].

Logic programming have been used in recent years in systems biology methods, in particular

in model inference. ASP have been used to determine all the feasible models compatible with

a given PKN, and characterise such models, inferring what is common or what is mutually

exclusive between models [9].

26

Approaches to infer logical models by exhaustively enumerate all models compatible with a

given set of experimental observations or a PKN using ASP have been proposed [70, 71]. Videla

et al. [70] uses an hypergraph as a representation of a logical model, where the regulatory func-

tions are represented by AND, OR and NOT gates in a regulatory graph. Then all the minimal

models (hypergraphs) compatible with a given PKN are determined, i.e., the hypergraphs with

a minimal number of hyperedges, or models with a minimal canonical length of logical formulas.

Time-series data can also be used to infer Boolean logical models, given a PKN. Ostrowski

et al. [10] considers a prior knowledge network and time-series data to determine all the com-

patible models using ASP. In order to do so, it considers an abstraction of a models dynamic

in order to be able to consider both synchronous and asynchronous update schemes for the

time-series data.

Satisfiability Modulo Theories (SMT) has also been used in the model inference procedure. In

Réda and Wilczyński [72] SMT is used to infer gene regulatory networks, determining plausible

regulatory scenarios that explain the observed experimental results.

Approaches using Integer Linear Programming (ILP) have been proposed and proven ade-

quate in model inference [73, 74]. Sharan and Karp [74] presents a model inference approach

that, given a PKN and experimental data, determines the best fitting model under a least

squares criterion. It also allows to have incomplete PKN in the sense that it allows edges with

unknown sign, i.e. unknown types of interactions.

3.2 Model Analysis

Computational models of biological regulatory networks are extremely useful to study net-

work properties, make predictions, or analyse biological behaviours, providing a better under-

standing of the corresponding biological processes. The study of a model, in particular the

study of its generated dynamic behaviours and the comparison between such behaviours and

experimental observations, is of great interest. Due to the STG combinatorial explosion several

formal verification techniques have been proposed to analyse dynamic behaviour.

3.2.1 Attractors Determination

The state of a network evolves through time, according to its dynamics, and tend to reach an

equilibrium. These equilibriums can be stable states or sets of recurring states, and are called

attractors (see Section 2.1.2).

Determining the attractors of a network is a very important task since attractors correspond

to meaningful biological properties of great relevance. However, this is not an easy task [75].

27

The task of attractors determination depends on the type or size of the attractors that are

being considered (point or cycle attractors), depends on the number of attractors that are being

determined (all, a subset, or just one), and depends on the dynamic generations that is being

considered (e.g. synchronous or asynchronous).

Considering only the identification of point attractors may be an easier task when compared

with the identification of all the attractors of a network. Point attractors are the nodes in the

STG which only have a transition to itself. However, defining the STG of a network, specially

when we have large and complex networks, is a difficult task. There are some approaches

that consider transforming a Boolean logical model into a SAT-network, which is a one-to-one

correspondence to a SAT formula, and then exhaustively considering all possible assignments to

the variables of the SAT formula in order to determine all point attractors of the network [75, 76].

Some approaches to determine attractors have been proposed using Decision Diagrams [77–

79]. There is a state space explosion with the increasing size of a network, which greatly impacts

the performance of some approaches to compute attractors of a network. Garg et al. [77] showed

that using Binary Decision Diagrams (BDDs) to represent Boolean logical models facilitates the

computation of the corresponding attractors. Naldi et al. [78] proposed an algorithm using a

generalised logical formalism by means of Multi-valued Decision Diagrams, in order to determine

all the point attractors of a model.

Other works define point attractors, or stable states, in a slightly different way, and use

weighted MaxSAT [80] and ASP [81] to find such likely stable states. A point attractor of a

network usually refers to all species in the network being at their equilibrium concentrations. The

work presented in [80] and [81] considers that such attractor refers to a subset of interactions that

can be consistently “on” or active. In other words, instead of defining variables for compounds

of the network being present or absent, the variables are defined for the interactions between

compounds being active or inactive.

Determining all attractors, including cycle attractors is a more challenging task. Dubrova

and Teslenko [82] proposed a SAT-based approach to find all attractors of Boolean logical models

considering synchronous update scheme. It determines any path of a given length in the STG.

If the path contains at least two equal states, then an attractor is found and marked as such. If

the path found did not contain an attractor, it is considered a higher path length. The process

terminates when no path is found and all attractors have been identified. The work of Fayruzov

et al. [69] uses Answer Set Programming (ASP) and allows the determination of all attractors

considering a Markovian program in order to overcome the challenge of determining the number

of time-steps needed to achieve an attractor.

28

Approaches to enumerate all attractors in a Boolean network were proposed by Khaled

and Benhamou [83, 84]. In [83], an exhaustive search for cycles in state transitions is performed

using an ASP framework, considering both synchronous and asynchronous update schemes. The

presence of a cycle is detected by checking if the last seen state appears at least twice in the path

considered, where the states in between any two occurrences of the last state belong to a cycle.

This method allows to find any stable or unstable cycle attractor. Whenever a cycle is found, it

is eliminated in the next iterations, allowing to enumerate all solutions. This approach can be

memory consuming when dealing with large networks. More recently, an approach was proposed

to enumerate all attractors in circular networks under asynchronous update scheme [84]. The

idea is to use the notion of a circuit in the regulatory graph to determine attractors. A circuit is

a path on the regulatory graph that starts and ends in the same node. Note that this circuit is on

the regulatory graph and not on the state transition graph. A circuit is said to be positive if it as

an even number of negative edges, and is said to be negative otherwise. Then, a positive circuit

admits two attractors, and a negative circuit admits only one attractor under asynchronous

update scheme [85].

3.2.2 Reachability Verification

Given a model and a set of experimental data, it is interesting to verify if the model can

explain the results obtained in the experiment. In other words, if the experimental data indicates

that we started at a given state and ended in other state, it is interesting to verify in the model

if there is a set of state transitions from the starting state to the ending state.

Model checking [86–89] consists in verifying if experimental observations are consistent with

the known model of the network. An experimental observation is consistent with the corre-

sponding model if the model can reproduce the observation, indicating the corresponding state

transitions. With larger and more complex networks it becomes intractable to verify the consis-

tency between the experimental data and the model manually and therefore many automated

techniques have been used [89].

Sometimes, verifying if an observation is consistent with a given model is not enough and it is

necessary to go further. It is useful to obtain some explanation for a given observation, i.e., what

are the interactions triggered. It is frequently necessary to consider incomplete models. The

work in [90] considers reasoning with incomplete and partial information about signal networks

in order to obtain explanations and predictions. For this effect, the work of Baral et al. [90] uses

the declarative programming language AnsProlog.

It is also interesting to know how can a system be influenced in order to avoid reaching

29

unsafe or undesired states. The work in [91, 92] introduces the notion of bifurcation, transitions

after which a given goal is no longer reachable. The work presents a method using ASP to iden-

tify bifurcations given a model represented as a discrete finite-state of interacting compounds.

However, this method, due to approximations, is not complete, i.e., does not guarantee the

identification of all the bifurcations, but only a subset.

3.2.3 Reduction Techniques

Analysing reachability properties or determining attractors on a logical model is computa-

tionally difficult. The state space explosion makes the generation of a model dynamic behaviour

a difficult task, specially when considering large networks and/or asynchronous update schemes.

For example, if we consider a logical model of a network with 20 compounds, with Boolean

variables, we have 220 = 1 048 576 possible states. If we want to analyse its dynamic properties,

considering asynchronous update scheme, then we have to consider tens of millions of possible

state transitions. To overcome this problem, reduction techniques have been proposed in order

to simplify the networks prior to dynamic analysis [93–95].

Naldi et al. [93] proposed a reduction method for logical models in which regulatory compo-

nents are removed iteratively, updating the corresponding regulatory rules taking into account

indirect effects of its regulators. The basic idea is to remove a node by connecting its regulators

directly to the nodes that are regulated by the removed node. The reduced model preserve

important dynamical properties of the original model such as all attractors. As trajectories in

a reduced model can be related to trajectories in the corresponding original model, with this

reduction method it is possible to verify reachability properties of a logical model by considering

the corresponding reduced model.

Zañudo and Albert [94] presents a reduction approach that uses a topological criterion in

an augmented representation of the network to identify network components that stabilise in

a fixed state. These components can then be used to reduce the network size, simplifying the

network.

Automata networks, which subsumes Boolean and multi-valued logical networks, have been

used to reduce qualitative models to enhance the analysis of network properties [28, 29]. The

reduction technique proposed by Pauleve [29] does not change the dimension of the model, but

limits its degree of freedom. It identifies state transitions that do not contribute to a given

reachability property, and therefore can be ignored. This will reduce the number of transitions

to consider when analysing reachability problems under asynchronous dynamic.

30

3.3 Model Revision

When new experimental data is acquired, it is necessary to validate if the computational

model is consistent with the new information, i.e., if the computational model can reproduce

the same experimental data. However, most models are manually built by a modeller (a domain

expert) and therefore are prone to error. Even considering automated approaches to built such

models, only known and most likely incomplete information is considered, and an incorrect

model may still be generated (although consistent with the knowledge at the time). Given

new information, a model may no longer be consistent, and therefore it should be revised and

updated. The notion of belief revision exists for a long time and addresses the problem of

having new information in conflict with previously known information [18]. However, there are

few approaches to model revision of Boolean models of biological regulatory networks.

Model revision approaches were proposed over the SCM formalism [4, 16, 17]. The SCM

relies on the difference between concentration levels, being different from the Boolean logical

model. In the SCM, each variable has value “+” (resp. “−”) if it represents an increase (resp.

decrease) in the concentration level of the biological compound. Moreover, the regulation of each

compound is based on sign algebra, being the sum of the products between the value of each

regulator and the sign of the corresponding interaction. This type of models lack expressiveness

of the regulatory functions compared with the logical model.

A first approach to model revision over Thomas’ logical formalism [3] was proposed by

Mobilia et al. [20]. In this work, it is considered that a model is inconsistent when it is over-

constrained. Therefore, to repair an inconsistent model, it is considered the removal of some

constraints, under a minimisation criterion, until the model is no longer inconsistent. This

may lead to under-constrained models, not correctly representing the corresponding biological

process.

Model revision usually operates under a minimal assumption as there can be several ways

to repair a model. Most approaches define atomic repair operations and minimise the number

of operations applied to render a model consistent. Merhej et al. [19] proposed the use of rules

of thumbs, which are properties found in the literature, in order to repair inconsistent Boolean

models. This work considers Boolean models where the regulatory function of each compound

is as follows: it becomes active if there is at least one active activator and there is no active

inhibitor; it becomes inactive if there is at least one active inhibitor and there is no active

activator; otherwise its value is not changed. When repairing such models, the synchronous

update scheme is considered, and the possible repair operations consist in adding or removing

edges between nodes of the model.

31

More recently, Lemos et al. [21] proposed a model revision procedure over Boolean regulatory

networks, where more expressive regulatory functions are considered when compared with the

previously mentioned approaches. Boolean functions are considered as regulatory functions,

represented by the combination of three basic Boolean functions (AND, OR, and IDENTITY).

Moreover, the set of defined repair operations comprise: changing the type of interaction of

a regulator; changing a Boolean operator from OR to AND and vice-versa; and removing a

regulator. This approach does not consider the impact that changing a regulatory function has

on the network dynamics. Moreover, regulatory functions are defined in a gate-like manner,

where changes operate over AND and OR operators. As a consequence, not all the possible

Boolean functions are considered when repairing an inconsistent model.

32

Chapter 4

Logic-based Approaches

Logic-based approaches, such as ASP [13, 14] and Boolean Satisfiability (SAT) [15], have

been successfully used in the context of biological regulatory networks [16, 17]. In this Chapter

we present an ASP approach to verify the consistency of Boolean logical models given a set

of experimental observations in Section 4.1. In Section 4.2 we present an ASP approach to

determine neighbours of monotone non-degenerate Boolean functions.

4.1 Consistency of Boolean Logical Models

During the iterative model construction procedure, as new data is acquired, the current

model may not be able to explain the new data, and therefore needs to be revised. Typically,

model construction and model revision is a manual task, performed by a domain expert, and

therefore prone to error. Moreover, there is an inherent combinatorial problem associated to all

possible changes to render a model consistent.

In this work, we developed a model revision procedure capable of producing all possible

set of atomic repair operations that render an inconsistent model consistent. We focused on

qualitative models, in specific in Boolean logical models, as described in Section 2.1.1.

In order to revise a model, a first necessary step is to check whether a given model is consistent

with a set of experimental observations. In the following sections we define the model input

format, the consistency check procedure developed, and the determination of inconsistencies.

4.1.1 Boolean Logical Model and Observations

The Answer Set Programming (ASP) paradigm has been used to represent biological models

and proven to be useful in model inference, consistency check, and model revision approaches [4,

16, 19]. We defined the consistency check procedure as an ASP program, and therefore, the

33

v1 v2

v3 v4

fv1 = v2

fv2 = ¬v1 ∧ v4

fv3 = v1 ∨ (v2 ∧ ¬v4)

Figure 2.2: Example of a Boolean logical model (repeated from page 8)

input model and observations are defined by predicates in ASP format.

A Boolean logical model is defined by set of nodes, corresponding to biological compounds,

a set of edges, corresponding to biological interactions, and a set of Boolean functions, corre-

sponding to the regulatory functions of each compound.

To represent the nodes, the predicate vertex(V) is used, indicating that V is a node of the

network. Interactions between compounds, represented as directed edges in regulatory graphs,

are defined by a predicate edge(V1, V2, S), corresponding to an edge from node V1 to node

V2, with sign S ∈ {0, 1}. An edge with sign 0 represents a negative interaction (or inhibition),

and an edge with sign 1 represents a positive interaction (or activation), as defined in Section

2.1. With this predicates, one can define the topology, or structure, of the network.

For a model to be complete, it is necessary to define the regulatory functions associated with

each biological compound. In the case of a Boolean logical model, these regulatory functions

are Boolean functions.

To represent Boolean functions, in BCF, two predicates are defined: functionOr(V, 1..N)

and functionAnd(V, T, R). The predicate functionOr(V, 1...N) indicates that the regula-

tory function of node V has N terms. Then, functionAnd(V, T, R) indicates that the term T

of the regulatory function of V contains the regulator (node) R. The sign associated with each

regulator is omitted in the regulatory function predicates as that information is present in the

corresponding edge.

The following Listing 4.1 represents the model illustrated in Figure 2.2, using the above

defined ASP predicates.

1 vertex(v1).

2 vertex(v2).

3 vertex(v3).

4 vertex(v4).

5

6 edge(v1, v2, 0).

7 edge(v1, v3, 1).

8 edge(v2, v1, 1).

34

9 edge(v2, v3, 1).

10 edge(v4, v3, 0).

11 edge(v4, v2, 1).

12

13 functionOr(v1, 1..1).

14 functionAnd(v1, 1, v2).

15

16 functionOr(v2, 1..1).

17 functionAnd(v2, 1, v1).

18 functionAnd(v2, 1, v4).

19

20 functionOr(v3, 1..2).

21 functionAnd(v3, 1, v1).

22 functionAnd(v3, 2, v2).

23 functionAnd(v3, 2, v4).

Listing 4.1: Example of the representation of the model in Figure 2.2.

For example, consider that fv3 is the regulatory function of biological compound represented

by v3, defined as fv3 = v1 ∨ (v2 ∧ ¬v4). Function fv3 has two terms as indicated by line 20 of

Listing 4.1. The first term of the function, defined in line 21, contains only regulator v1, and

the second term is a conjunction of v2 and ¬v4, as indicated in lines 22 and 23. Note that the

negation of v4 does not appear in the predicate functionAnd, as this sign is defined by the edge

from v4 to v3 with sign 0, in line 10.

With the described ASP predicates, a Boolean logical model can be well defined. Now, in

order to define an experimental observation, more predicates are introduced. To allow multiple

experimental observations of the same regulatory network, we define the predicate exp(E),

identifying E as an experimental observation. Then, the observed values of the experiment must

be defined. This, however, depend on the type of experimental observation. In this work we

considered two types of observations:

• Stable state observations;

• Time-series observations.

The stable state observations, represent point attractors, as defined in Section 2.1.2, and

therefore do not take into account the dynamic of the network. To encode these stable state

observations, the predicate obs vlabel(E, V, S) is used to represent that in experimental

observation E, node V has an observed value of S ∈ {0, 1}.

35

For example, Listing 4.2 represents the stable state S[v1, v2, v3, v4] = {0000} of the model

in Figure 2.2. To represent multiple observations, a new experimental must be defined (e.g.

exp(e2).) with the corresponding set of observed values (obs vlabel).

1 exp(e1).

2 obs_vlabel(e1, v1, 0).

3 obs_vlabel(e1, v2, 0).

4 obs_vlabel(e1, v3, 0).

5 obs_vlabel(e1, v4, 0).

Listing 4.2: Stable state of the model in Figure 2.2.

When time-series observations are being considered, a time component must be taken into

account. Time-series observations define a set of observed values in a sequence of time steps. In

order to define such observations, the predicate obs vlabel(E, T, V, S) is used, similarly to

the previously described predicate. In this predicate, the time component T is added indicating

that in experiment E, node V, has an observed value of S in time step T. The time value is defined

as a non-negative integer.

For example, to define the sequence of observed states S0 = {1100}, S1 = {1010}, and

S2 = {0010}, for the model in Figure 2.2, the Listing 4.3 is used.

1 exp(e2).

2 obs_vlabel(e2, 0, v1, 1).

3 obs_vlabel(e2, 0, v2, 1).

4 obs_vlabel(e2, 0, v3, 0).

5 obs_vlabel(e2, 0, v4, 0).

6 obs_vlabel(e2, 1, v1, 1).

7 obs_vlabel(e2, 1, v2, 0).

8 obs_vlabel(e2, 1, v3, 1).

9 obs_vlabel(e2, 1, v4, 0).

10 obs_vlabel(e2, 2, v1, 0).

11 obs_vlabel(e2, 2, v2, 0).

12 obs_vlabel(e2, 2, v3, 1).

13 obs_vlabel(e2, 2, v4, 0).

Listing 4.3: Time-series observation of the model in Figure 2.2.

Remark 4.1.1. Note that all the instances of the variables in ASP predicates must start with

a lowercase letter or number.

36

4.1.2 Consistency Check

Given a model and a set of experimental observations, we want to verify if the model is con-

sistent, i.e., if the model is able to reproduce the given observations. If the model is consistent,

then there is no need to repair it. Otherwise, if the model cannot reproduce the observed values,

it is necessary to identify possible reasons for inconsistency.

We say that a model is inconsistent if it has at least one inconsistent node, and consistent

otherwise. A node is inconsistent if its regulatory function cannot reproduce the corresponding

observed value. In the case of a stable state observation, each node must reproduce the cor-

responding observed value, considering the value of its regulators. In the case of a time-series

observation, each node must reproduce, at each time step, the observed value, given the value

of its regulators in the previous time step.

In order to consider different types of observations, different ASP programs are defined to

check the consistency of the models, and identify inconsistent nodes in case of inconsistency. In

this work, we are able to check the consistency of a logical model given either a set of stable

state observations, or a set of time-series data, but not both simultaneously. Note that it is

possible to consider multiple observations of the same type simultaneously.

Also, having complete observational data may not be possible. To address this, we consider

that missing values may exist and can assume any value. We take advantage of the ASP paradigm

properties, to consider all the possible combinations of missing values.

Stable State Observations

In order to check the consistency of a logical model, given a set of stable states, it is necessary

to verify if each node is able to reproduce the corresponding observed value, given the value of

its regulators.

The following Listing 4.4 defines the ASP program that verifies whether a model is consistent,

and determines which nodes are inconsistent in case of inconsistency.

1 sign (0;1).

2 complement(T,S) :- sign(S), sign(T), T!=S.

3

4 vertex(V) :- edge(V,_,_).

5 vertex(V) :- edge(_,V,_).

6

7 % generate

8 1{ vlabel(E,V,S):sign(S)}1 :- vertex(V), exp(E).

9

37

10 :-vlabel(E,V,S), obs_vlabel(E,V,T), complement(S,T).

11

12 % functions

13 % one positive or negative contribution in a term

14 onePositive(E,V,Id) :- functionAnd(V,Id, V2), edge(V2,V,S),

vlabel(E,V2 ,S), exp(E).

15 oneNegative(E,V,Id) :- functionAnd(V,Id, V2), edge(V2,V,S),

vlabel(E,V2 ,T), complement(S,T), exp(E).

16

17 % none negative in a term

18 noneNegative(E,V,Id) :- onePositive(E,V,Id), not oneNegative(E,V,Id).

19

20 vlabel(E,V,1) :- 1{ noneNegative(E,V,Id):functionOr(V,Id)}, vertex(V),

exp(E), not r_part(V).

21 vlabel(E,V,0) :- {noneNegative(E,V,Id):functionOr(V,Id)}0, vertex(V),

exp(E), functionOr(V,_), not r_gen(V).

22

23 % inconsistencies

24 {r_gen(V)} :- vertex(V), not fixed(V).

25 {r_part(V)} :- vertex(V), not fixed(V).

26

27 % inconsistent nodes

28 repair(V) :- r_gen(V).

29 repair(V) :- r_part(V).

30

31 #minimize {1,V : repair(V)}.

32 #minimize {1,g,V : r_gen(V)}.

33 #minimize {1,p,V : r_part(V)}.

34

35 #show r_gen /1.

36 #show r_part /1.

37 #show vlabel /3.

38 #show repair /1.

Listing 4.4: Consistency check ASP program for stable state observations.

Lines starting with % indicate comment lines.

Lines 1 and 2 of Listing 4.4 are auxiliary predicates that define the possible values of the

variables and that two values are complement of each other if they are different.

38

The rules defined in line 4 and 5 indicate that if there is an edge from, or to some compound

V, then V is a node of the network. These lines are not necessary if all the nodes of the network

are defined. However, as it is possible to infer the nodes from the edges, these rules ensure that

if the nodes are not defined, then they are inferred.

As we support missing values, the predicate vlabel is defined to assign a value to each node.

Line 8 indicates that every node V of every experiment E must have at least one and at most

one (exactly one) assigned value S ∈ {0, 1}.

If a given observed value is defined, then the assign value of the corresponding node must

be equal. In other words, there cannot exist an assigned value different of the corresponding

observed value (if it exists), which is defined with the rule in line 10.

In order to check the consistency, the evaluation of the regulatory functions must be made.

Given a Boolean function in DNF, its value is evaluated to 1 (true) if at least one of its terms

evaluates to 1. Otherwise, the function evaluates to 0 (false). For a term to be evaluated to 1, all

of its literals must be evaluated to 1, since a term is a conjunction (AND) of literals. Otherwise,

the term is evaluated to 0. Line 14 and 15 define that a term has a positive or negative evaluated

literal, respectively. Note that, in order to evaluate a literal it is taken into account its assigned

value and the sign of the corresponding interaction. Then, on line 18 we define that a term

does not contain any negative literal if it contains at least one positive literal and none negative,

therefore that term evaluates to 1. Finally, lines 20 and 21, indicate that the assigned value of a

node must be 1 if there is a term of the corresponding function that evaluates to 1. Otherwise,

the assigned value must be 0.

To determine possible inconsistent nodes, i.e., nodes that have functions that do not evaluate

to the corresponding assigned value, two predicates are introduced in lines 24 and 25: r gen

and r part. The former means that a node has an assigned value 1 but its function evaluates

to 0, and the latter indicates that a node has an assigned value of 0 but its regulatory function

evaluates to 1. This will allow to have inconsistent assignments while identifying those nodes

at the same time. Lines 24 and 25 indicate that a node may or may not be an inconsistent

node. Note that the rules on lines 20 and 21 take into account these predicates, allowing, for

example, a function to evaluate to 1 and the assigned value not to be 1 if that node has the

r part predicate defined.

The fixed predicate, that appears on lines 24 and 25, prevents a given node to be considered

inconsistent. Preventing a node to be considered inconsistent is of great interest, as it allows to

avoid applying repair operations to such node in case of inconsistency. This, however, will make

this consistency check program to justify a possible inconsistency with other nodes. With the

39

definition of fixed nodes, it may become impossible to justify or identify reasons of inconsistency,

due to the fact that the problem may become overconstrained.

Lines 28 and 29 of Listing 4.4 define that an node with an inconsistent assigned value (r gen

or r part) is an inconsistent node in need of repair.

Finally, lines 31 to 33 are minimisation ASP directives in order to minimise the number of

inconsistent nodes. This will force the ASP program to assign the missing values such that the

most number of assigned values are consistent with the model. Note that this only applies to

unobserved values as line 10 prevents assignments that differ from the observed values.

The last four lines of Listing 4.4 are directives for the program to produce as output only the

corresponding predicates. The output produced is the essential information in case of inconsis-

tency: complete assignments to each node, the inconsistent nodes, and the type of inconsistency.

Moreover, it is possible to retrieve all the possible solutions for this ASP program, allowing to

consider all the possible assignments of values.

Time-Series Observations

To check the consistency of a model confronted with time-series observations, it is necessary

to take into account the evolution of the network through time. Although the program is similar

to the consistency check procedure for stable state observations, some adjustments are necessary.

Listing 4.5 defines the core ASP program to check the consistency of a model under dynamic

observations.

1 time (0..t).

2 sign (0;1).

3 complement(T,S) :- sign(S), sign(T), T!=S.

4

5 vertex(V) :- edge(V,_,_).

6 vertex(V) :- edge(_,V,_).

7

8 %generate

9 1{ vlabel(E,T,V,S):sign(S)}1 :- vertex(V), exp(E), time(T).

10

11 :-vlabel(E,T,V,S1), obs_vlabel(E,T,V,S2), complement(S1,S2).

12

13 % functions

14 % one positive or negative contribution in a term

15 onePositive(E,T,V,Id) :- functionAnd(V,Id, V2), edge(V2,V,S),

vlabel(E,T,V2 ,S), exp(E), time(T).

40

16 oneNegative(E,T,V,Id) :- functionAnd(V,Id, V2), edge(V2,V,S1),

vlabel(E,T,V2 ,S2), complement(S1 ,S2), exp(E), time(T).

17

18 % none negative in a term

19 noneNegative(E,T,V,Id) :- onePositive(E,T,V,Id), not

oneNegative(E,T,V,Id).

20

21 %input nodes

22 input(V) :- not functionOr(V,_), vertex(V).

23 vlabel(E,T+1,V,S) :- input(V), vlabel(E,T,V,S), exp(E), time(T), T<t,

not repair(V).

24

25 % inconsistencies

26 {r_gen(V)} :- vertex(V), not fixed(V).

27 {r_part(V)} :- vertex(V), not fixed(V).

28

29 % inconsistent nodes

30 repair(V) :- r_gen(V).

31 repair(V) :- r_part(V).

32

33 #minimize {1@1,V : repair(V)}.

34 #minimize {1@1,g,V : r_gen(V)}.

35 #minimize {1@1,p,V : r_part(V)}.

36

37 #show repair /1.

38 #show r_gen /1.

39 #show r_part /1.

40 #show vlabel /4.

Listing 4.5: Consistency check ASP program for time-series observations.

Most of the rules presented in Listing 4.5 are similar to the ones previously described in

Listing 4.4, where only the notion of time was added.

The first line of Listing 4.5 indicates the number of time steps that will be considered, defined

by a constant t. In lines 22 and 23, it is defined input nodes as nodes without regulatory function

associated. This is important to ensure that an input node maintain its value through time.

The rule defined in line 23 indicates that an input node as the same value as its value in the

previous time step, if it is not being considered an inconsistent node.

However, in Listing 4.5 it is not defined how the values are assigned in each time step besides

41

input nodes. The assignment of values depends on the considered update scheme. In this work,

we consider both synchronous and asynchronous update schemes. In a synchronous update

scheme, all of the regulatory functions are applied at each time step, updating the values of the

corresponding nodes. To do so, the rules in Listing 4.6 are defined.

1 vlabel(E,T+1,V,1) :- 1{ noneNegative(E,T,V,Id):functionOr(V,Id)},

vertex(V), exp(E), not r_part(V), not topologicalerror(V),

time(T), T<t.

2 vlabel(E,T+1,V,0) :- {noneNegative(E,T,V,Id):functionOr(V,Id)}0,

vertex(V), exp(E), functionOr(V,_), not r_gen(V), not

topologicalerror(V), time(T), T<t.

3

4 % there cannot exist two times with the same update , which function ’s

inputs are the same and the output is different , either in two

different time points or in different experiments

5 % any function applied in two time points with the same inputs cannot

have different outputs

6 topologicalerror(V) :- time(T1), time(T2), T1 != T2 , T1 < t, T2 < t,

vertex(V), {vlabel(P1 ,T1 ,V1 ,S1): vlabel(P2 ,T2 ,V1 ,S2), S1!=S2 ,

functionAnd(V,Id, V1)}0, vlabel(P1,T1+1,V,S3),

vlabel(P2,T2+1,V,S4), S3 != S4 , not input(V).

7 topologicalerror(V) :- time(T), T < t, exp(P1), exp(P2), P1 != P2 ,

vertex(V), {vlabel(P1 ,T,V1 ,S1): vlabel(P2 ,T,V1 ,S2), S1!=S2 ,

functionAnd(V,Id, V1)}0, vlabel(P1,T+1,V,S3), vlabel(P2,T+1,V,S4),

S3 != S4, not input(V).

8

9 repair(V) :- topologicalerror(V).

10

11 #minimize {1@2,top ,V : topologicalerror(V)}.

12

13 #show topologicalerror /1.

Listing 4.6: Synchronous update scheme.

The first two lines of Listing 4.6 are similar to lines 20 and 21 of Listing 4.4 previously

explained. When considering time-series observations, a special case of inconsistency may occur.

In fact, we may have two occurrences of the same network state in different time steps, with

transitions to different states. As the regulatory functions are deterministic, it is not possible

to produce different values, given the same input values. This is a special type of inconsistency

where the topology, or structures, of the network has an error, because there is no Boolean

42

function that can produce different values in the same conditions. The rules in line 6 and

7 of Listing 4.6 define that if an assignment is made where different values are produced in

different time steps in the same conditions, we are in the presence of a node with a topological

error. Moreover, as we support the existence of missing observation values, line 11 avoids the

assignments where such topological error occurs, without preventing them as they can be, in

fact, the reason for an inconsistent model.

In the asynchronous update scheme, only one regulatory function is applied at each time

step. Therefore, different rules are necessary and are presented in Listing 4.7.

1 % only one node updates at each time

2 1{ update(E,T,V):vertex(V)}1 :- exp(E), time(T), T<t.

3

4 vlabel(E,T+1,V,1) :- update(E,T,V),

1{ noneNegative(E,T,V,Id):functionOr(V,Id)}, vertex(V), exp(E), not

r_part(V), not topologicalerror(V), time(T), T<t.

5 vlabel(E,T+1,V,0) :- update(E,T,V),

{noneNegative(E,T,V,Id):functionOr(V,Id)}0, vertex(V), exp(E),

functionOr(V,_), not r_gen(V), not topologicalerror(V), time(T),

T<t.

6

7 % keep all others node values

8 vlabel(E,T+1,V,S) :- not update(E,T,V), vlabel(E,T,V,S), time(T), T<t.

9

10 % prevent updates that do not change the state of the network

11 :- update(E,T,V), vlabel(E,T,V,S), vlabel(E,T+1,V,S), time(T), T<t.

12

13 % there cannot exist two times with the same update , which function ’s

inputs are the same and the output is different , either in two

different time points or in different experiments

14 % any function applied in two time points with the same inputs cannot

have different outputs

15 topologicalerror(V) :- time(T1), time(T2), T1 != T2 , T1 < t, T2 < t,

update(P1, T1, V), update(P2 , T2 , V), {vlabel(P1 ,T1 ,V1 ,S1) :

vlabel(P2,T2,V1 ,S2), functionAnd(V,Id , V1), S1!=S2}0,

vlabel(P1,T1+1,V,S3), vlabel(P2 ,T2+1,V,S4), S3 != S4 , not input(V).

16 topologicalerror(V) :- time(T), T < t, update(P1 , T, V), update(P2 ,

T, V), P1 != P2 , {vlabel(P1 ,T,V1 ,S1) : vlabel(P2 ,T,V1 ,S2), S1!=S2 ,

functionAnd(V,Id, V1)}0, vlabel(P1,T+1,V,S3),

vlabel(P2,T+1,V,S4), S3 != S4 , not input(V).

43

17

18 repair(V) :- topologicalerror(V).

19

20 #minimize {1@2,top ,V : topologicalerror(V)}.

21

22 #show update /3.

23 #show topologicalerror /1.

Listing 4.7: Asynchronous update scheme.

In order to consider that only one regulatory function is applied at each time step, the

predicate update is defined in line 2 of Listing 4.7.

The rules in line 4 and 5 are similar to previously described rules (Listing 4.6) where the

value of each node is assigned according to the corresponding regulatory function. However, the

assignment is only done if the corresponding node is the node updated at that time step. Then,

all the nodes that do not update at a given time step, will keep the corresponding value in the

next time step, according to the rule defined in line 8.

We prevent updates that to not change the state of the network with the rule in line 11.

Therefore, only updates that change the state of the network are considered in the dynamic

behaviour. The rest of the rules in Listing 4.7 are similar to the ones in Listing 4.6 to identify

nodes with a topological error.

These ASP programs check the consistency of a Boolean logical model when confronted

with either stable state observations, or time-series observations. Moreover, considering time-

series observation, both synchronous and asynchronous update schemes are supported. It is

also supported the existence of missing values in observational data. In case of an inconsistent

model, it is possible to retrieve information regarding the inconsistent nodes and reasons of

inconsistency.

Consider the previous model example in Figure 2.2. If we consider an incomplete stable state

observation where node v1 = 0 and node v4 = 0, and use the answer set program in Listing

4.2, we can get an answer set (or solution) with no inconsistent nodes, where nodes v2 and v3

are assigned with value 0. Note that S[v1, v2, v3, v4] = {0000} is a stable state of this model

(see corresponding STG of this model in Figure 2.6). Internally, the program considers all the

possible assignments for nodes v2 and v3, and as there is an optimisation directive, the optimum

solution with no inconsistent nodes is produced. However, if we now consider a stable state

observation of node v1 = 1 and node v4 = 0, we obtain two optimum solutions, each with one

inconsistent node. One of the solutions is to consider that v2 = 1 and v3 = 1 and we have

44

T1 T2 T3

v1 0 1

v2 1 1

v3 1 1 1

v4 1 1 1

(A)

T1 T2 T3

v1 0 0 1

v2 1 1 0

v3 1 1 1

v4 1 1 1

(B)

T1 T2 T3

v1 0 0 1

v2 1 1 1

v3 1 1 1

v4 1 1 1

(C)

T1 T2 T3

v1 0 1 1

v2 1 1 0

v3 1 1 1

v4 1 1 1

(D)

T1 T2 T3

v1 0 1 1

v2 1 1 1

v3 1 1 1

v4 1 1 1

(E)

Figure 4.2: Consistency check of incomplete time-series observations under synchronous update
scheme considering the model in Figure 2.2.

an inconsistent node v2. In this solution, the program produces the predicates r gen(v2) and

repair(v2) indicating that node v2 is not consistent where its regulatory function produces

value 0, but value 1 is expected. If we apply every regulatory function, assuming the state

S[v1, v2, v3, v4] = {1110} we obtain the following:

fv1 = v2 = 1

fv2 = ¬v1 ∧ v4 = 0

fv3 = v1 ∨ (v2 ∧ ¬v4) = 1

Therefore, for this state to be a stable state, node v2 is considered inconsistent. Another solution

is to consider node v2 = 0 and node v3 = 1 where a similar reasoning can be made, and in this case

node v1 is considered inconsistent. Note that the other two possibilities (S[v1, v2, v3, v4] = {1000}

and S[v1, v2, v3, v4] = {1100}) for the compatible states with the given partial observation are

not optimum solutions, with more than one inconsistent node, and are, therefore, not produced

by the program.

Consider now the (incomplete) time-series observation in Figure 4.2 (A) under synchronous

update scheme, with time steps T1, T2 and T3, and the model in Figure 2.2. Tables (B),

(C), (D), and (E) represent the four compatible complete time-series observations, where all the

45

combinations of possible assignments of the missing values are considered. Marked in red are

the values which cannot be explained by the model. Note that, since all the state information

is fixed, each node can be checked independently to verify if its value can be reproduced at

each time step considering the (fixed) state of the network in the previous time step. This

means that at each time step, we consider that the input of each regulatory function is the

expected value (the fixed values) rather than the currently produced values, as we assume that

we may be in the presence of inconsistent nodes. For example, considering table (C), to check

if the regulatory function of node v2 can reproduce the expected value (1) at time step T3, we

consider that node v1 has value 0 at time step T2. Note that the regulatory function of v1, at

time step T2 produces value 1, which is not the expected value, and we assume that node v1

is inconsistent and for future computation we consider the expected value of 0. The complete

compatible time-series observation represented in table (B) contains three inconsistent nodes

(v1, v2, and v3), since each of these nodes contain at least one value that cannot be reproduced

by the current model. Tables (C) and (E) have two inconsistent nodes, and table (D) has only

one inconsistent node (v3). Therefore, the consistency check procedure in Listings 4.5 and 4.6,

produces as solution the complete time-series observation represented by table (D). This is the

complete observation, compatible with the given time-series observation in table (A), with the

minimum number of inconsistent nodes. Note that in case of multiple complete observations

with the minimum number of inconsistent nodes, all the optimum solutions are produced by the

consistency check procedure.

4.2 Boolean Function Relations

The study of Boolean functions and their properties became a very important task when

considering the model revision process of Boolean logical models. One of the reasons for a

model to be inconsistent is the incorrectness in regulatory functions. Therefore, it is desired to

be able to change a regulatory function if necessary, without changing the topology (or structure)

of the network. However, changing a regulatory function will also change the inherent dynamic

behaviour of the model. In this work we limited the domain of the regulatory functions to

monotone non-degenerate Boolean functions. Two Boolean functions can be compared using the

relation � defined by Cury et al. [34] and presented in Section 2.2. Considering such relation and

the set of all monotone non-degenerate Boolean functions, a partial order set can be defined and

represented by an Hasse diagram (see Figure 2.8). Considering this partial order set of monotone

non-degenerate Boolean functions, the proximity of two functions is proportional to the number

of different entries in the corresponding truth tables. As such, the closer two functions are in the

46

Hasse diagram, the minimal impact exists in the regulatory structure, and therefore, minimal

changes of the dynamic behaviour [34]. Therefore, in this work, we consider the rules to compute

neighbours of a given monotone non-degenerate Boolean function presented by Cury et al. [34]

as described in Section 2.2. In the following, an ASP encoding of these rules is presented.

Listing 4.8 is the base ASP program to help compute the parents and children of a given

Boolean function. We consider that a Boolean function in BCF is represented as a set S where

each element is a set of variables representing a term of the function. To compute a neighbour

function, we first generate all the possible non-empty sets over n variables, where n is the function

dimension (i.e. the number of regulators). Note that there are p = 2n− 1 different sets. Lines 2

and 3 of Listing 4.8 indicate that there are n elements (function dimension) and p different sets,

where n and p are given as constants of the program. We define the predicate powerSet(N,E) to

represent the possible sets, where N ∈ {1, . . . , p} identifies the set, and variable (or element) E is

present in that set. A Boolean function is then represented with the aid of predicate term(T,E),

meaning that variable E is present in term T of the function in BCF.

Line 5 of Listing 4.8 introduces predicate selected(N) to represent that the set N, defined

by predicate powerSet, is a set representing a term of the function. To manipulate the p

sets of possible terms (powerSet), some ASP rules are defined. In line 8, we define predicate

containsPS(N1,N2) if there is no element in set N2 that it is not present in set N1, i.e., if set N1

contains N2. Then in line 11 we define that a set N1 is a parent of N2 if N1 contains N2, and N1

contains only one element that it is not present in N2. Line 13 define predicate countPS(N,S)

meaning that set N contains S elements.

As we are only considering non-degenerate Boolean functions, the rule on line 15 prevents

the definition of functions that do not contain all the n variables in the BCF representation.

1 %number of elements

2 element (1..n).

3 id(1..p).

4

5 selected(N1) :- id(N1), id(N2), term(N2,_), {element(E) :

powerSet(N1,E), not term(N2,E)}0, {element(E) : term(N2,E), not

powerSet(N1,E)}0.

6

7 % N1 contains N2

8 containsPS(N1,N2) :- id(N1), id(N2), {element(E): powerSet(N2,E), not

powerSet(N1,E)}0.

9

10 % N1 is parent of N2 (contains N2) with only one more element

47

11 parent(N1 ,N2) :- containsPS(N1 ,N2), id(N1), id(N2), C = #count

{element(E): powerSet(N1,E), not powerSet(N2,E)}, C=1.

12

13 countPS(N,S) :- id(N), S = #count {element(E):powerSet(N,E)}.

14

15 :- element(E), {powerSet(N,E):selected(N)}0.

16

17 1{rule(r1;r2;r3)}1.

18

19 #show rule /1.

Listing 4.8: ASP base program to compute parents or children of Boolean functions.

There are three rules to compute the parents of a given function, and three rules to compute

the children of a given function (see Section 2.2). We consider that we either only compute

the parents, or we only compute de children. Moreover, we consider that exactly one rule can

be applied at a time, as defined in line 17 of Listing 4.8, producing only one parent (or child).

Then, to compute all the parents (resp. children) of a given function, an ASP solver can be used

to retrieve all possible solutions.

To compute the parents, following the rules 1, 2, and 3 defined by Cury et al. [34], we defined

the ASP programs in Listing 4.9, 4.10, and 4.11, respectively. To compute a parent of a given

Boolean function, Listings 4.8, 4.9, 4.10, and 4.11 must be used simultaneously. Listing 4.9

define the rule 1 to compute a parent of a function. This rule adds to the set of terms of a

function, a new term that is independent of all the terms in the function (is not contained nor

contains), and is of maximum size. Lines 1, 2, and 3 of Listing 4.9 define as dominate the sets

that are contained or contain a term present in the function. Then in line 5 it is defined that a

set is independent if it is not dominate. The maximum independent set is identified in line 8.

The program produces the predicate selectedR1(N) that indicates that the term N is present

in a parent of the original function when rule 1 is applied. As this rule only adds one term, all

the original terms are present in the parent function, as indicated by the rule in line 11. Then,

in line 12, exactly one new term is selected to be present in the parent function. To ensure that

all variables are present in the parent function, the restriction in line 14 is defined.

1 dominate(N) :- selected(N).

2 dominate(N1) :- id(N1), id(N2), selected(N2), containsPS(N1,N2).

3 dominate(N1) :- id(N1), id(N2), selected(N2), containsPS(N2,N1).

4

5 independent(N) :- id(N), not dominate(N).

48

6 :- id(N), independent(N), dominate(N).

7

8 maxIndependent(N) :- id(N), independent(N), countPS(N,S),

{countPS(N2,S2): independent(N2), S < S2}0.

9

10 :- rule(r1), not maxIndependent(_).

11 selectedR1(N) :- selected(N), id(N), rule(r1),

1{ maxIndependent(N2):id(N2)}.

12 1{ selectedR1(N):maxIndependent(N)}1 :- rule(r1).

13

14 :- element(E), rule(r1), {powerSet(N,E):selectedR1(N)}0.

15

16 :- rule(r1), not selectedR1(_).

17 :- selectedR1(_), not rule(r1).

18

19 #show selectedR1 /1.

Listing 4.9: ASP program to compute the parents of a Boolean function - Rule 1.

The rule 2 to compute a parent function is defined in Listing 4.10. In line 1 we define a

potential set candidate to be added to the function (potentialR2). According to rule 2, this

potential candidate must be contained by at least one term of the original function and must not

exist another set that is also contained by that term and contains the potential set. The potential

candidate must not be contained by any set that satisfies rule 1. This potential candidate, if

exists, will replace the terms of the original function that contains the candidate. The predicate

potentialR2(N1,N2) in line 3 is defined to identify the sets N2 that will be replaced by the

candidate N1. Then lines 5 and 7 select the terms that are present in the parent function by rule

2 (selectedR2). To ensure that all variables are present in the parent function, the restriction

in line 9 is defined.

1 potentialR2(N1) :- id(N1), id(N2), selected(N2), parent(N2,N1),

{containsPS(N3,N1): independent(N3)}0.

2

3 potentialR2(N1,N2) :- id(N1), id(N2), potentialR2(N1), parent(N2,N1),

{potentialR2(N3):parent(N3,N1)}0.

4

5 {selectedR2(N):potentialR2(N,_)}1.

6

7 selectedR2(N) :- id(N), selected(N),

49

1{ selectedR2(N3):potentialR2(N3 ,_)},

{selectedR2(N2):parent(N,N2),id(N2)}0.

8

9 :- element(E), rule(r2), {powerSet(N,E):selectedR2(N)}0.

10

11 :- rule(r2), not selectedR2(_).

12

13 :- selectedR2(_), not rule(r2).

14

15 #show selectedR2 /1.

Listing 4.10: ASP program to compute the parents of a Boolean function - Rule 2.

The rule 3 to compute a parent function is defined in Listing 4.11. This rule indicates that

we add two terms to the original function that satisfy rule 2 except restriction (c) (see Section

2.2). The program identifies a potential term candidate that will be removed from the original

function (potentialRemR3) in line 1 of Listing 4.11. Then, in line 3 are selected two terms that

satisfy rule 2. In line 7 and 8 are defined ASP rules to satisfy the exception mentioned above.

In these rules we say that each new term that will be added to the function must contain at

least one element that is also present in a different term of the parent function. To ensure that

all variables are present in the parent function, the restriction in line 12 is defined.

1 1{ potentialRemR3(N):selected(N)}1 :- rule(r3).

2

3 2{ selectedR3(N):potentialR2(N,N2),potentialRemR3(N2)} :- rule(r3).

4

5 selectedR3(N) :- selected(N), not potentialRemR3(N), rule(r3).

6

7 duplicateElementR3(E,N1) :- powerSet(N1,E), selectedR3(N1),

potentialR2(N1,N2), potentialRemR3(N2), 1{ selectedR3(N3):id(N3),

N3!=N1 , powerSet(N3 ,E)}.

8 :- selectedR3(N1), potentialR2(N1,N2), potentialRemR3(N2),

{element(E):powerSet(N1,E), not duplicateElementR3(E,N1)}0.

9

10 :- selectedR3(N), id(N), selected(N),

1{ selectedR3(N2):parent(N,N2),id(N2)}.

11

12 :- element(E), selectedR3(N1), id(N1), {powerSet(N,E):selectedR3(N)}0.

13

14 :- rule(r3), not selectedR3(_).

50

15

16 :- selectedR3(_), not rule(r3).

17

18 #show selectedR3 /1.

Listing 4.11: ASP program to compute the parents of a Boolean function - Rule 3.

Similarly, following the rules 1, 2, and 3 to compute the children of a given Boolean function

defined by Cury et al. [34], we define the ASP programs in Listing 4.12, 4.13, and 4.14 respec-

tively. To compute a child of a given Boolean functions, Listings 4.8, 4.12, 4.13, and 4.14 must

be used simultaneously. Rule 1 says that we remove a term of the function such that there is no

independent set of the resulting function that contains the removed term. As this rule is related

to rule 1 of computing parents, Listing 4.12 has similar definitions of Listing 4.9 described above.

In line 1 of Listing 4.12 we define one potential term to be removed. Line 6 define the selected

terms for the child function with the predicate selectedR1. Then in lines 12 and 13 we define

that cannot exist an independent term that contains the removed term.

1 1{ potentialRemR1(N):selected(N)}1 :- rule(r1).

2 :- rule(r1), not potentialRemR1(_).

3

4 potentialRem(N) :- potentialRemR1(N).

5

6 selectedR1(N) :- selected(N), not potentialRemR1(N), rule(r1).

7

8 dominate(N1,N) :- selected(N), potentialRem(N1), N!=N1.

9 dominate(N,N1) :- id(N1), id(N2), selected(N2), containsPS(N1,N2),

potentialRem(N), N2!=N, N1!=N.

10 dominate(N,N1) :- id(N1), id(N2), selected(N2), containsPS(N2,N1),

potentialRem(N), N2!=N, N1!=N.

11

12 independent(N1,N) :- id(N), not dominate(N1,N), potentialRem(N1),

N!=N1.

13 :- id(N), independent(N1,N), dominate(N1,N).

14

15 :- independent(N,_), not potentialRem(N).

16 :- dominate(N,_), not potentialRem(N).

17

18 :- potentialRem(N),

{potentialRemR1(N);potentialRemR2(N);potentialRemR3(N)}0.

19

51

20 :- potentialRemR1(N), id(N2), independent(N,N2), containsPS(N2,N),

rule(r1).

21

22 :- rule(r1), element(E), potentialRemR1(N2),

{powerSet(N,E):selectedR1(N)}0.

23

24 :- rule(r1), not selectedR1(_).

25 :- selectedR1(_), not rule(r1).

26

27 #show selectedR1 /1.

Listing 4.12: ASP program to compute the children of a Boolean function - Rule 1.

The rule 2 to compute a child function is defined in Listing 4.13. In this rule, we first remove

a term of the function. Then, we add a new term that is a minimum size independent set that

contains the removed term. In line 1 of Listing 4.13, we define a potential term to be removed

(potentialRemR2). In line 6 we say that each term that is not removed is present in the child

function (selectedR2). Lines 8 define a potential new term to be added that is independent and

contains the removed term. Then, in line 10, we add the new term that does not contain any

other potential set. To ensure that all variables are present in the child function, the restriction

in line 12 is defined.

1 1{ potentialRemR2(N):selected(N)}1 :- rule(r2).

2 :- rule(r2), not potentialRemR2(_).

3

4 potentialRem(N) :- potentialRemR2(N).

5

6 selectedR2(N) :- selected(N), not potentialRemR2(N), rule(r2).

7

8 potentialR2(N) :- independent(N2,N), potentialRemR2(N2),

containsPS(N,N2), N!=N2.

9

10 selectedR2(N) :- potentialR2(N), rule(r2),

{potentialR2(N2):containsPS(N,N2), N!=N2}0.

11

12 :- potentialRemR2(N2), element(E), rule(r2),

{powerSet(N,E):selectedR2(N)}0.

13

14 :- rule(r2), {potentialR2(N):selectedR2(N)}0.

15 :- potentialR2(N), potentialRemR2(N2), not independent(N2,N), N2!=N.

52

16

17 :- rule(r2), not selectedR2(_).

18 :- selectedR2(_), not rule(r2).

19

20 #show selectedR2 /1.

Listing 4.13: ASP program to compute the children of a Boolean function - Rule 2.

The rule 3 to compute a child function is defined in Listing 4.14. This rule is the inverse of

rule 3 to compute a parent function. In this rule two terms of the function are removed and a

new term, that is the union of the removed terms, is added. The removed terms must not satisfy

rules 1 and 2. In line 1 of Listing 4.14 two terms are chosen to be removed (potentialRemR3).

The terms that are not removed are present in the child function (line 6). Lines 9-12 make sure

that the removed terms do not satisfy rule 1. Lines 16 and 17 do the same for rule 2. Then,

lines 20-22 select the new term to be added that is the union of the removed terms. To ensure

that all variables are present in the child function, the restriction in line 24 is defined.

1 2{ potentialRemR3(N):selected(N)}2 :- rule(r3).

2 :- rule(r3), not potentialRemR3(_).

3

4 potentialRem(N) :- potentialRemR3(N).

5

6 selectedR3(N) :- selected(N), not potentialRemR3(N), rule(r3).

7

8 %not r1

9 invalidR1(N) :- potentialRemR3(N), id(N2), independent(N,N2),

containsPS(N2,N), rule(r3).

10 validR1(N) :- not invalidR1(N), potentialRemR3(N), rule(r3).

11 invalidR1(N1) :- rule(r3), potentialRemR3(N1), element(E),

{powerSet(N,E):selected(N), N!=N1}0.

12 :- rule(r3), potentialRemR3(N), validR1(N).

13

14

15 %not r2

16 potentialR32(N) :- independent(N2 ,N), potentialRemR3(N2),

containsPS(N,N2), N!=N2.

17 :- rule(r3), 1{ potentialR32(N):id(N)}.

18

19 %union of terms

20 potentialR3(N) :- id(N), potentialRemR3(N1), potentialRemR3(N2),

53

N1!=N2 , containsPS(N,N1), containsPS(N,N2), N!=N1 , N!=N2.

21 duplicateElementR3(E,N) :- element(E), potentialR3(N),

potentialRemR3(N1), N1!=N, powerSet(N,E), powerSet(N1 ,E).

22 selectedR3(N) :- potentialR3(N), {element(E):powerSet(N,E), not

duplicateElementR3(E,N)}0.

23

24 :- rule(r3), element(E), potentialRemR3(N2),

{powerSet(N,E):selectedR3(N)}0.

25

26 :- rule(r3), not selectedR3(_).

27 :- selectedR3(_), not rule(r3).

28

29 #show selectedR3 /1.

Listing 4.14: ASP program to compute the children of a Boolean function - Rule 3.

As it was mentioned before, it is possible to compute all the parents (or children) of a

given function by using an ASP solver to compute all the possible solutions. Although it is

possible to compute the parents and children of a monotone non-degenerate Boolean function

using these ASP programs, it is not the most efficient approach. With the presented definition

of the problem, and given the characteristics of ASP, all the possible combinations of functions

are considered by the ASP solver when computing parents/children of functions. The number

of Boolean functions with dimension n is 22
n
. Although we restrict the domain to monotone

non-degenerate boolean functions, the number of functions is still very large [34]. In fact, the

number of monotone Boolean functions is known as the Dedekind number [96, 97] and there

is no closed-form expression for it. It is only known the exact number of monotone Boolean

functions up to n = 8, as shown in Table 4.1.

To improve performance and avoid considering all the possible functions when computing

Table 4.1: Number of monotone (M(p)) and monotone non-degenerate (N(p)) Boolean functions
of dimension p.

p M(p) N(p)

1 3 1

2 6 2

3 20 9

4 168 114

5 7 581 6 894

6 7 828 354 7 785 062

7 2 414 682 040 998 2 414 627 396 434

8 56 130 437 228 687 557 907 788 56 130 437 209 370 320 359 968

54

parents and children of a given Boolean function, a C++ procedure was developed, following

the same rules described in Section 2.2. This procedure revealed to be faster to compute parents

and children of a given Boolean function than the ASP approach, as shown in the results section

(Section 6.2). The implementation of these rules as a C++ library is available online1.

1https://github.com/FilipeGouveia/BooleanFunction

55

https://github.com/FilipeGouveia/BooleanFunction

56

Chapter 5

Model Revision

Models of biological regulatory networks are not always in line with existing experimental

observations, that is, the model may not be able to reproduce some experimental observations.

In this case we say that the model is inconsistent and must be revised.

In this Chapter a Model Revision approach for Boolean logical models of biological regulatory

networks is presented. Section 5.1 details the model revision approach, and in Section 5.2 is

presented the developed ModRev tool.

5.1 Model Revision Approach

As new data is acquired, models may become inconsistent, not being able to reproduce the

new data, and therefore a model revision process is needed. In this work we will consider Boolean

logical models, as defined in Section 2.1.1.

Figure 5.1 illustrates the general idea of the model revision process. Given a Boolean logical

model and a set of experimental observations, in a first phase it is necessary to check the

consistency of the model. This consistency check procedure is described in Section 4.1. If a

model is consistent with the experimental observations, there is no need for repair. However,

if the model is inconsistent, it is necessary to search for possible repair operations in order to

render the model consistent. The goal is to be able to produce sets of repair operations that can

be applied to an inconsistent model. There may exist a lot of possible combinations of repair

operations that can render an inconsistent model consistent, and therefore, it is desired to filter

possible solutions. To that end, and to avoid exploring all the possible combinations of repair

operations, we defined an optimisation criterion to select optimal solutions as a product of the

model revision approach.

We defined four possible causes for inconsistency and corresponding repair operations, as

57

Model

Exp.
Obs.

Check
Consistency

Search
Repairs

Select
Optimal

Solutions

No Solution

Consistent

Solutions

Repairs
. . .

Repairs

Figure 5.1: Overview of the model revision process.

Table 5.1: Causes of inconsistency and corresponding repair operations. Class F stands for
Function repair and class T stands for Topology repair.

Cause Repair Operation Class

Wrong Regulatory Function Function change F

Wrong Interaction Type Edge sign flip T

Wrong Regulator Edge removal T

Missing Regulator Edge addition T

shown in Table 5.1. A model may have a wrong regulatory function defined, and in this case, we

want to be able to change the regulatory function. An interaction type (activation or inhibition)

may be incorrect, and in this case, we may want to change the interaction type by changing

the sign of the corresponding edge in the regulatory graph (see Section 2.1.1). A model may

also be inconsistent due to the presence of a wrong regulator or due to the absence of a missing

regulator. In these cases, we may want to consider remove the wrong regulator by removing its

edge, or add the missing regulator by adding the corresponding edge. These repair operations

can be classified as function repairs (class F) thus changing a given regulatory function, or as

topological repairs (class T) thus changing the topology (or structure) of the regulatory graph.

As previously mentioned, considering the four repair operations presented in Table 5.1,

different possible combinations of such operations can render an inconsistent model consistent.

Consider the model in Figure 2.2 with four nodes as an example, and assume that node v3 is

inconsistent. To repair the model, we can apply any combination of operations over node v3,

i.e. changing its regulatory function, flipping the sign of any of its incoming edges (regulators),

remove any of its regulators and/or add the missing regulator (node v3 itself). Taking also into

account that there are 114 monotone non-degenerate Boolean functions with four arguments, 9

with 3 arguments, 2 with two arguments, and 1 with one argument, and considering that we

can change the regulatory function to any function within the corresponding dimension (taking

into account possible addition or removal of regulators), there are a total of 2 168 different

combinations of repair operations that can be applied over node v3, as shown in Table 5.2. Each

line represents a combination of the number of operations of each type that can be applied.

58

Table 5.2: Combinations of all possible repair operations that can be applied over nove v3
of the model in Figure 2.2. For each operation type (remove regulator; add regulator; flip
the sign of edge; and change function) is indicated the number of operations (#Oper.) and
the corresponding number of possible combinations/options (#Opt.), and the corresponding
regulatory function dimension (Dim.) and number of functions (#F).

Removal Addition Flip Sign Function
Total

#Oper. #Opt. #Oper. #Opt. #Oper. #Opt. Dim. #F

0 1 0 1 0 1 3 8 8

0 1 0 1 1 3 3 9 27

0 1 0 1 2 3 3 9 27

0 1 0 1 3 1 3 9 9

0 1 1 2 0 1 4 114 228

0 1 1 2 1 3 4 114 684

0 1 1 2 2 3 4 114 684

0 1 1 2 3 1 4 114 228

1 3 0 1 0 1 2 2 6

1 3 0 1 1 2 2 2 12

1 3 0 1 2 1 2 2 6

1 3 1 2 0 1 3 9 54

1 3 1 2 1 2 3 9 108

1 3 1 2 2 1 3 9 54

2 3 0 1 0 1 1 1 3

2 3 0 1 1 1 1 1 3

2 3 1 2 0 1 2 2 12

2 3 1 2 1 1 2 2 12

3 1 0 1 0 1 0 1 1

3 1 1 2 0 1 1 1 2

Total 2 168

Note that whenever a regulator is added or removed, the regulatory function will necessarily

change, and the change of function dimension have to be taken into account. Moreover, when

we consider adding a missing regulator, it can be added with a positive or negative interaction,

thus adding two possibilities. In general, if we have a node with n regulators and m missing

regulators, considering the removal of r regulators we have
(
n
r

)
possibilities, considering the

addition of a regulators that can be added with either positive or negative sign we have 2a×
(
m
a

)
possibilities, considering flipping the sign of e edges we have

(
n−r
e

)
possibilities, and we can

change the regulatory function to any function with dimension n− r + a.

Considering that a model can have more than one node in need of repair, that models typi-

cally have many dozens of nodes, and that the number of possible monotone Boolean functions

increases exponentially with the number of regulators, there is a combinatorial explosion in the

search space for possible repair operations.

To filter all the possible solutions of repair operations that can be applied to render an

inconsistent model consistent, and to avoid exploring all the possible combinations of such

59

operations, we defined the following lexicographic optimisation criterion:

1. Minimise the number of add/remove edge operations;

2. Minimise the number of flip sign of an edge operations;

3. Minimise the number of function change operations.

The defined optimisation criterion takes into consideration how a logical model is built. In

particular, multiple Boolean functions are likely to be consistent with the existing data, but

only one is chosen as the regulatory function of a node. Therefore, we assume that we have a

higher level of confidence in the correctness of the topology of the network than in the regulatory

functions of the model. Note that in the defined criterion, the top priority is to minimise the

number of add/remove edge operations which changes the topology of the network. Whereas in

the lowest priority is the number of function change operations. This means that it is preferred

solutions with only function changes, over solutions with some topological operations.

Given the consistency check procedure described in Section 4.1, in case of an inconsistent

model it is provided not only all the minimum set of inconsistent nodes, but also the corre-

sponding complete data (stable state or time-series) with all the expected values (see Figure

4.2). With this in mind, we can try to repair each node individually without having to take into

account the interactions with other nodes in the network dynamics, as we only have to be sure

that each node can produce the expected value (at each time step in case of time-series data).

Note that, by fixing the complete experimental data first, it is not necessary to generate the

model’s dynamic when a repair operation is applied, but rather just make sure that the model

can reproduce the fixed set of complete experimental observations, as all state transitions are de-

fined by the complete observations. Moreover, this can be done by considering each inconsistent

node independently.

Given a model and the set of complete experimental data with the corresponding inconsistent

nodes given by the consistency check procedure described in Section 4.1, we defined the model

revision procedure in Algorithm 1 and 2. This is an iterative and incremental approach. The

procedure iterates over all the complete data and corresponding inconsistent nodes, and then

iterates over every inconsistent node to find possible repair operations. To repair an inconsistent

node, the procedure uses an incremental approach where it is considered an incremental number

of repair operations, following the above defined optimisation criterion. The search for repair

operations starts by considering only function changes, as it is desired to avoid changing the

topology of the network. If no consistent function is found, topological repairs are considered.

We try one operation of edge sign flip, and then, if one operation is not enough to render the

60

Algorithm 1: Model Revision

Input: Model, ExpData [ExpData1, ExpData 2, . . .]
Output: Set of optimal solutions found

1 begin
// Check the consistency of the model given the set of experimental

observation with the ASP program defined in Section 4.1

2 [(ExpData1,InconsistentNodes1), . . .] ← ConsistencyCheck(Model, ExpData);
3 foreach pair of experimental data and corresponding inconsistent nodes do
4 foreach Inconsistent node n do
5 RepairNode(n, Model, ExpData); // Algorithm 2

6 end

7 end
8 Filter non-optimal solutions

9 end

model consistent, we increment the number of allowed operations and consider all combinations

of two operations. We consider combinations of increasing number of edges until all the edge

combinations are considered. For each attempt at flipping the sign of an edge, all possible

functions changes are considered again. If no solution is found, the procedure advances to the

next stage of topological changes, by repeating this process considering the addition or removal

of one edge. If the model is still not consistent, then we consider the same process with two

edges. All the combinations are considered increasingly until no more edges can be added or

removed. Having this incremental approach allows to find optimal solutions, avoiding exploring

all the possible combinations of repair operations. Once a solution to repair an inconsistent

node is found, the procedure considers it as an upper bound. All the optimal solutions will have

the same number of operations (considering the lexicographic criterion) or less, but never more.

In the end of the model revision procedure, we have optimal solutions for each set of complete

data, that may differ in optimality. Hence, in the end only the optimal solutions are produced.

Figure 5.2 illustrates an example of a model revision process for a Boolean logical model

confronted with an incomplete time-series observation under synchronous update scheme. The

consistency check procedure (see Section 4.1) considers all the possible combinations of com-

patible time-series data, i.e. all the combinations of the missing values, as shown in the four

tables illustrated. The values marked in red in each table represent the values that cannot be

explained by the given model. The consistency check procedure produces all the compatible

complete data with the minimum amount of inconsistent nodes. Note that in this case there

is only one table (third table) with the minimum number of inconsistent nodes (one node).

However, if there were more tables with the same (minimum) number of inconsistent nodes, all

would be produced and considered for the search of repair operations. Moreover, the consistency

61

Algorithm 2: Repair Node

Input: Node, Model, ExpData
1 begin
2 for n = 0 to MaxAddRemoveOperations do
3 foreach combination of n add and remove ops. (to Node) do
4 for m = 0 to NumberOfEdges do
5 foreach combination of m flipping edge sign ops. (of Node) do
6 Check the consistency of Node if is not consistent then
7 Search for consistent function (function change op.)
8 end
9 if solution is found then

10 Finish the current iteration to search for other solutions with the
same number of operations and exit the cycle

11 end

12 end

13 end
14 if solution is found then
15 Finish the current iteration to search for other solutions with the same

number of operations and exit the cycle
16 end

17 end

18 end

19 end

check procedure produces the inconsistent nodes and corresponding reason(s) of inconsistency.

Then, for each complete time-series data produced by the consistency check procedure, for each

inconsistent node, Algorithm 2 is called. In the end, the model revision procedure produces all

the optimal set of repair operations that can render the model consistent. In the example of

Figure 5.2, there is only one optimal solution, with one repair operation, which is to change the

regulatory function of v3.

5.1.1 Validation of Node Consistency

For the model revision procedure to be able to repair an inconsistent node, it is necessary to

verify if the node became consistent after each repair operation being considered. This validation

of consistency depends on the type of experimental observations and update scheme considered.

In this work it is considered stable state observations and time-series data, under synchronous

and asynchronous update schemes.

Considering a set of complete stable state observations, for a node to be consistent it must

be able to reproduce its value considering the value of its regulators, for each stable state

observation. Note that the consistency check procedure gives a complete stable state data in

case of missing observed values.

62

v1 v2

v3 v4

fv1 = v2

fv2 = ¬v1 ∧ v4

fv3 = v1 ∨ (v2 ∧ ¬v4)

Model

T1 T2 T3

v1 0 1

v2 1 1

v3 1 1 1

v4 1 1 1

Observation

Consistency Check

T1 T2 T3

v1 0 0 1

v2 1 1 0

v3 1 1 1

v4 1 1 1

T1 T2 T3

v1 0 0 1

v2 1 1 1

v3 1 1 1

v4 1 1 1

T1 T2 T3

v1 0 1 1

v2 1 1 0

v3 1 1 1

v4 1 1 1

T1 T2 T3

v1 0 1 1

v2 1 1 1

v3 1 1 1

v4 1 1 1

Inconsistent nodes: {v3}

RepairNode(v3); (Algorithm 2)

Search for Repair Operations

Change function of v3 to:

fv3 = v1 ∨ v2 ∨ ¬v4

Repairs

Figure 5.2: Model revision process of a Boolean logical model confronted with a time-series
observation under synchronous update scheme.

63

To validate the consistency of a node given a set of time-series observations, the process is

similar to the one considering stable state observations. The difference relies on the necessity

of verifying if a node is able to reproduce the expected value at every time step. However, we

have to take into account the update scheme considered. Considering the synchronous update

scheme, a node is consistent only if it can reproduce the expected value at every time-step

given the expected values of its regulators in the previous time step. In an asynchronous update

scheme, only one node is updated at each time step. To verify if a node is repaired, it is necessary

to verify if it can reproduce its expected value given the expected values of its regulators, not

at every time step, but only at the time steps in which that node is updated. Note that the

consistency check procedure defined in Section 4.1 not only produces the complete observations

(all the expected values), but also the information regarding the updated nodes.

5.1.2 Function Repair Search

The search for possible function repairs is a crucial step in our model revision approach.

Changing a regulatory function will change the model dynamic behaviour. When repairing an

inconsistent model, it is desired to make the least amount of changes possible, with minimal

impact on the model dynamic behaviour. When considering monotone non-degenerate Boolean

functions, the impact of a function change can be minimised considering an Hasse diagram (see

Section 2.2 and Figure 2.8 for details). The closer two functions are in an Hasse diagram, the

less impact exists in the dynamic behaviour when changing a regulatory function [34].

In order to search for possible function repairs, information regarding the type of incon-

sistency is used to avoid exploring the whole function space. The consistency check procedure

defined in Section 4.1 gives some information that can be useful in the search for function repairs.

The consistency check procedure indicates if a node needs a more generic function (r gen), i.e.

if a node is expected to have value 1 but the function evaluates to 0, or if it needs a more specific

function (r part), i.e. if a node is expected to have value 0 but the function evaluates to 1.

Considering the relation between monotone non-degenerate Boolean functions defined in

Section 2.2, the ancestors (parents) of a given function are more generic functions, having more

entries with value 1 in the corresponding truth table. Analogously, the descendants (children) of

a given function are more specific functions, having more entries with value 0 in the corresponding

truth table. Note that the top function in the Hasse diagram is the most generic function in

which all the entries of the truth table have value 1 except one entry, and the bottom function

in the Hasse diagram is the most specific function in which all the entries of the truth table have

value 0 except for one entry.

64

Original
Function

Most Generic Function

Most Specific Function

Figure 5.3: Search space of Boolean functions assuming the original function has an entry
that evaluates to 0 but a 1 is needed. The diamond shape represents the space of monotone
non-degenerate Boolean functions. The area in red represents the space of impossible function
candidates. The area in green represents the space of possible function candidates.

For the sake of clarity, here we will explain the search methods for function repairs considered

when we have a node to be expected value 1 but the function evaluates to 0 (r gen), but the

process is analogous for the opposite case (r part). If the regulatory node evaluates to 0 but

a 1 is expected, we know that the descendants of that function will not be possible function

candidates since they all have the same entries in the truth table with value 0 (and more).

Figure 5.3 illustrates the search space of monotone non-degenerate Boolean functions, with the

area in red being the descendants of the original function that are not valid function candidates

for replacement when considering the r gen type of inconsistency. The area in green represents

the search space of possible function candidates.

To search for possible functions repairs, we can consider if the original function is in the

bottom half or in the top half of the Hasse diagram and start the search for possible function

repairs from the most specific function (resp. the most generic function), and then go up (resp.

down) the Hasse diagram. In order to consider the functions closer to the original function for

the repair operation, the search is performed in a breath-first style ensuring that all the closest

functions are considered, taking into account the comparison between levels of functions as

defined in Section 2.2. Moreover, with this method, the search can stop earlier once a consistent

function candidate is found: with the same level as the original function; with the highest level

lower than the original function (and there is no candidate with the same level of the original);

or with the lowest level higher than the original function. Figure 5.4 illustrates the search for

a function repair in this case. In Figure 5.4 the original function is in the bottom half of the

Hasse diagram and, therefore, the search starts at the most specific function and goes up in a

breath-first search. The search can stop at the dashed line, as consistent functions are found,

and the search is going farther from the original function. Other consistent functions may exist,

above the dashed line, but are not optimal and therefore are not considered.

65

Original
Function

Search
Space

Most Generic Function

Most Specific Function

Consistent
Functions

Stop Search

Figure 5.4: Search of Boolean functions assuming the original function has an entry that evalu-
ates to 0 but a 1 is needed. The diamond shape represents the space of monotone non-degenerate
Boolean functions. Direction of the search is indicated by dashed arrows. Search stops at the
dashed line.

Original
Function

Search
Space

Most Generic Function

Most Specific Function

Consistent
Functions

Stop Search

Figure 5.5: Near optimal search of Boolean functions assuming the original function has an entry
that evaluates to 0 but a 1 is needed. The diamond shape represents the space of monotone
non-degenerate Boolean functions. Direction of the search is indicated by dashed arrows. Search
stops at the dashed line. In green is the search space considered.

However, with this search method, although all optimal solutions (if exist) are found, we

may end up considering a huge number of function candidates. To avoid such searching we

consider a near optimal search approach. If we are in a case where the value 1 is expected

but a function evaluates to 0, it is probable to find a consistent candidate only looking at the

ancestors of that function. Therefore, we can start at the original function and go up the Hasse

diagram in a breath-first search. Note that with this method it is possible to not find a consistent

candidate although it may exist, being not an ancestor of the original function. Moreover, even

if a consistent function is found, it may not be the optimum candidate. Figure 5.5 illustrates

the search for function repairs considering the near optimal approach. The search starts at the

original function and goes up the diagram, and the search space considered is smaller than the

one described previously (see Figure 5.4).

Note that these search methods for function repair operations are analogous when considering

r part inconsistencies, where a function evaluates to 1 but a value 0 is expected.

Considering the possible reasons of inconsistency (r gen and r part), so far it was described

66

Original
Function

Most Generic Function

Most Specific Function

Figure 5.6: Search space of Boolean functions when in presence of a double inconsistency. The
diamond shape represents the space of monotone non-degenerate Boolean functions. The area
in red represents the space of impossible function candidates. The area in green represents the
space of possible function candidates.

Original
Function

Search
Space

Most Generic Function

Most Specific Function

Consistent
Functions Stop Search

Figure 5.7: Search of Boolean functions when in the presence of a double inconsistency. The
diamond shape represents the space of monotone non-degenerate Boolean functions. Direction
of the search is indicated by dashed arrows. Search stops at the dashed line.

two search methods for repair operations when in the presence of only one reason (i.e. either

r gen or r part). However, it may be the case where we are in the presence of the two types

of inconsistency simultaneously. We call this case, a double inconsistency. This happens when

there are two states of the network from which in one of them a regulatory function evaluates

to 0 but a 1 is expected, and in the other the function evaluates to 1 but a 0 is expected. In

this case we know that if a consistent regulatory function exists, it is neither an ancestor nor a

descendant of the original function. Figure 5.6 illustrates the space of monotone non-degenerate

Boolean functions in case of double inconsistency. The area in red represents the ancestors and

descendants of the original function that are not possible function candidates of replacement.

To search for possible function repairs when in presence of a double inconsistency, a search

can be made, similarly to the optimal search described before (Figure 5.4). In this case, if the

original function is in the bottom half of the diagram (resp. top half), the search starts at the

most specific function (resp. most generic function) and goes up (resp. down) the diagram.

Figures 5.7 illustrates the search in a double inconsistency case, where the possible candidates

are not ancestors nor descendants of the original function.

67

Model

Exp.
Obs.

(C++)

Check
Consistency

(ASP)

Search
Repairs

Select
Optimal

Solutions

No Solution

Consistent

Solutions

Repairs
. . .

Repairs

Figure 5.8: ModRev tool arquitecture. A model and a set of experimental observations are
the input of the tool. The tool is mainly implemented in C++, and in yellow is represented the
ASP component. The tool produces optimal sets of repair operations. Dashed arrows represent
alternative flows.

5.2 ModRev - Model Revision Tool

ModRev is a freely available model revision tool for Boolean logical models of biological

regulatory networks1. We developed ModRev, a command line tool, that implements the model

revision methods presented in Chapter 4 and Chapter 5 (Section 5.1) to repair inconsistent

models under stable state and time-series observations.

Considering a Boolean logical model and a set of experimental observations, ModRev de-

termines whether the model is consistent with the observations. In case of inconsistency, it

determines the minimum set of nodes that must be repaired. Four possible repair operations

are considered: change a regulatory function; change the type of interaction (from activation to

inhibition and vice-versa); remove a regulator; and add a regulator.

In order to repair an inconsistent model, the following lexicographic optimisation criterion,

as defined in Section 5.1, is considered:

1. Minimise the number of add/remove edge operations;

2. Minimise the number of flip sign of an edge operations;

3. Minimise the number of function change operations.

This lexicographic criterion allows to give preference to function changes over changes in the

structure of the network.

Figure 5.8 illustrates the tool architecture. Dashed arrows represent alternative flows, where

it is not possible to repair a model, or the model is already consistent and no repair is needed.

In white is represented the components of the tool implemented in C++, and in yellow the

component (Check Consistency) implemented using ASP (see Section 4.1).

1https://filipegouveia.github.io/ModelRevisionASP/

68

https://filipegouveia.github.io/ModelRevisionASP/

Regulatory functions supported by ModRev are monotone non-degenerate Boolean func-

tions. Biologically, a monotone function means that each regulator only has one role, either an

activator, or an inhibitor, but not both. A non-degenerate function means that each regulator

influences the output of the regulatory function. Otherwise, it should not be a regulator. This

model revision process requires the regulatory functions to be represented in BCF [33, 34].

The ModRev tool is based on ASP [14], and the input is defined using ASP predicates, as

described in Section 4.1.1. To represent a Boolean logical model we use the predicate vertex(V),

to indicate that V is a node of the regulatory graph, and the predicate edge(V1,V2,S) to

represent an edge from V1 to V2 with a sign S ∈ {0, 1}, where 0 (1) represents a negative

(positive) interaction. The predicate vertex may be omitted if the node can be inferred from

edge predicates. To represent regulatory functions, we use the predicate functionOr(V,1..N)

that indicates that the regulatory function of V is a disjunction of N terms. The predicate

functionAnd(V,T,R) is then used to represent that node R is a regulator of V and is present in

the term T of the regulatory function.

ModRev is able to confront a model with a set of experimental observations, either in stable

state, or a time-series data. To represent the set of experimental observations, the predicate

exp(E) is used to identify an experimental observation E. To represent the observed values

of an experiment E, we use the predicate obs vlabel(E,V,S), which means that node V in

experiment E has an observed value S ∈ {0, 1} considering stable state observations. If time-

series observations are to be considered instead, a similar predicate (obs vlabel(E,T,V,S)) is

used, where T represents the time-step of the observed value.

If ModRev identifies that a given model is not consistent with a set of observations, it

produces all the optimum solutions (repairs) that render the model consistent. Considering

the optimisation criterion defined above, the optimum set of repair operations are produced.

However, one may want to prevent some of the repair operations. For example, if one is certain

that a given interaction in a model is correct, solutions where that interaction is removed or its

type is changed, are not desired. To give the user some control over the solutions produced, it is

possible to classify any edge (or even any node) of the network as fixed. This can be done by

adding to the definition of the model, given as input, a predicate fixed(V1,V2) meaning that

the edge from V1 to V2 is fixed, or by adding a predicate fixed(V) meaning that node V is fixed.

With this, solutions that affect fixed edges or fixed nodes are not considered. Note that with

the addition of such definitions, an inconsistent model may become impossible to repair, due to

over-constraining the problem.

When searching for function repair operations, ModRev uses by default the near optimal

69

search described in detail in Section 5.1.2. However, an option to force the optimum search is

implemented, allowing the user to control the search method used for function repairs.

A tutorial with detailed examples of how to use the tool is presented in Appendix B.

70

Chapter 6

Experimental Evaluation

In this chapter we present the evaluation method used to test the proposed model revision

approach. Section 6.1 presents the instances used in the evaluation method. The results are

described in Section 6.2. This chapter ends with a discussion of the results in Section 6.3.

To the best of our knowledge, there is no other model revision approach over Boolean logical

models with the same considerations and repair operations as the proposed approach. Therefore,

there is no possible fair comparison with other model revision approaches to be made allowing us

to gather conclusions. Some of the existent approaches consider the SCM which has specific rules

for regulations based on sign algebra that cannot be changed [4, 16, 17]. Other model revision

approaches over Boolean logical models consider fixed regulatory functions [19], different repair

operations (or subset of operations) [20, 21], or do not take into account the impact of changing a

regulatory function in the networks dynamic behaviour as the proposed model revision approach

does.

6.1 Instances

To evaluate the proposed model revision approach, five well-known biological logical models

are considered, representative of different processes and organisms: the cell-cycle regulatory

network of Fission Yeast (FY) [68], with only 10 nodes and 27 edges being a very connected

network, and 12 stable states; the Segment Polarity (SP) network which plays a role in the fly

embryo segmentation [98], with the biggest regulatory function of the models considered with

eight regulators; the T-Cell Receptor (TCR) signalling network [99], with 40 nodes and 57 edges,

being a less connected network with an average regulatory function dimension of 1, 425; the core

network controlling the Mammalian Cell Cycle (MCC) [100], with only 10 nodes and 35 edges,

being the most connected network considered with an average regulatory function dimension

71

Table 6.1: Boolean models used for evaluation with corresponding: abbreviation (Abbr.), num-
ber of nodes (#N), number of edges (#E), number of stable states (#SS), average number
of regulators (Avg.Reg.), maximum number of regulators (Max.Reg.), and associated reference
(Ref.).

Abbr. Model #N #E #SS Avg.Reg. Max.Reg. Ref.

FY Fission Yeast 10 27 12 2,7 5 [68]

SP Segment Polarity (1 Cell) 19 57 7 3 8 [98]

TCR TCR Signalisation 40 57 7 1,425 5 [99]

MCC Mammalian Cell Cycle 10 35 1 3,5 6 [100]

Th Th Cell Differentiation 23 35 3 1,52 5 [101]

of 3,5; and the regulatory network controlling T-helper (Th) cell differentiation [101], with 23

nodes and 35 edges, being an average model when compared to the other models considered.

Table 6.1 shows some characteristics of the five models used. These models range from 10 to 40

nodes, having different degrees of connectivity, and different number of stable states, allowing

comparisons between models to assess the impact of some model properties in the model revision

process. For example, TCR with 40 nodes and 57 edges is less connected than SP, which has

the same number of edges but only 19 nodes, which can be verified by the dimension of the

regulatory functions (average and maximum number of regulators).

Furthermore, in order to evaluate our method, we generate corrupted models from the origi-

nal ones. We consider different types of corruptions: changing a regulatory function (F), flipping

a sign of an edge (E), removing a regulator (R), or adding a regulator (A). Then, we generate

corrupted models giving a probability of applying each of these types of corruption. We con-

sider 24 different configurations of these corruption types (F, E, R, and A), as shown in Table

6.2. First, we consider configurations with single types of corruptions. With changes only on:

the regulatory functions; the sign of edges; the regulators by removal; and the regulators by

addition. Then, some configurations with more than one type of corruption are also considered.

For each configuration, 100 corrupted models are generated, giving a total of 2 400 corrupted

models of each original model.

To evaluate the proposed model revision approach, we confront the corrupted models with

observations that are consistent with the corresponding original model to verify if the approach

is able to repair the corrupted models in case of inconsistency with the given observations, or

produce no repairs if the corrupted model is consistent with the observations. To evaluate the

proposed method under stable state observations, the original stable states of each model are

considered. Table 6.1 indicates the number of stable states of each model.

To evaluate the model revision process under time-series data, different sets of observations

are randomly generated. Considering the original models, 10 different observations with 20 time

72

Table 6.2: Percentage (%) values of F, E, R, and A parameters, of the 24 corruption configura-
tions (# Config.). Probability of changing a function(F). Probability of flipping the sign of an
edge (E). Probability of removing a regulator (R). Probability of adding a regulator (A).

Config. F E R A

1 5 0 0 0

2 25 0 0 0

3 50 0 0 0

4 100 0 0 0

5 0 5 0 0

6 0 10 0 0

7 0 15 0 0

8 0 20 0 0

9 0 25 0 0

10 0 50 0 0

11 0 75 0 0

12 0 0 1 0

13 0 0 5 0

14 0 0 10 0

15 0 0 15 0

16 0 0 0 1

17 0 0 0 5

18 0 0 0 10

19 0 0 0 15

20 25 5 0 0

21 50 25 0 0

22 100 50 0 0

23 5 25 5 5

24 10 10 5 5

steps for each model are generated. Of these 10 observations, 5 consider the synchronous update

scheme and 5 the asynchronous update scheme. The observations generated are consistent with

the original models. This permits the evaluation of the proposed approach, by feeding our

method with a corrupted model and the corresponding set of observations, in order to verify

if it can repair the corrupted model rendering it consistent with the observations given. This

evaluation considers both synchronous and/or asynchronous update schemes. To assess the

impact of the number of observations on the method performance, we consider different subsets

of these generated observations. For each corrupted model we test our method with only one

time-series observation, and with all the five observations simultaneously. Moreover, we consider

observations with a different number of time steps, three and twenty time steps, in order to study

the impact of the size of the observations on the method performance.

73

6.2 Results

In this section we present the results of different tests performed in order to evaluate our

model revision approach. In the model revision process, the near optimal search of function

repairs operations as described in Section 5.1.2 is considered for the evaluation. Note that the

near optimal search of function repairs may result in non optimum solutions where a possible

function repair may exist but is not found and a topological repair is considered instead. How-

ever, despite the exponential growth, this search method considers a smaller function space,

with respect to the exhaustive search, improving the efficiency of the model revision approach.

All the experiments were run on an Intel(R) Xeon(R) 2.1GHz Linux machine with a memory

limit of 2GB. A selection of these results are discussed in Section 6.3. More detailed results are

presented in Appendix A.

6.2.1 Stable State Observations

To evaluate the model revision approach under stable state observations, we feed our method

with each corrupted model and the corresponding set of stable state observations. In order to

compare the impact of using the ASP program described in Section 4.2 for the function repair

search, and the equivalent C++ implementation (library available online 1), both approaches

are tested.

Table 6.3 shows the average and median times in seconds for solved instances per model per

corruption configuration (see Table 6.2), using ASP for function repair search. A time limit of

600 seconds is considered, and the corresponding number of timeouts are also shown in Table

6.3.

Table 6.4 shows the average and median times in seconds for solved instances per model per

corruption configuration (see Table 6.2), using the C++ library developed for function repair

search. A time limit of 600 seconds is also considered, and the corresponding number of timeouts

are shown in Table 6.4.

To shed more light on the obtained results, Figure 6.1 illustrates a time comparison of solved

instances per model using ASP for function repair operations search. Similarly, Figure 6.2

illustrates a time comparison of solved instances per model using the C++ library implemented

for function repair operation search. Figures 6.1 and 6.2 show the SP model as the one with less

number of solved instances, with higher solving times, and MCC as the model with the lowest

solving times, where almost all of the 2 400 are solved. Moreover, Figures 6.1 and 6.2 clearly

show that the TCR model has lower solving times and more solved instances than the SP model,

1https://github.com/FilipeGouveia/BooleanFunction

74

https://github.com/FilipeGouveia/BooleanFunction

which has the same number of edges (57) and the same number of stable state observations (7),

but is more connected, with only 19 nodes whereas the TCR model has 40 nodes.

As the results show, using the C++ library to compute the parents and children of monotone

Boolean functions is strictly better than using the ASP approach. The results in Table 6.4 (C++

approach) show a higher number of solved instances than the results shown in Table 6.3 (ASP

approach). Moreover, all the solved instances using ASP are solved faster by the C++ approach.

Therefore, in the remaining tests only the C++ approach is considered.

In order to verify the impact of increasing the time limit considered in the number of solved

instances, the time limit is increased to 3 600 seconds. The detailed results are presented in

Appendix A (see Table A.1). Table 6.5 summarises the number of unsolved instances for all

the approaches considered under stable state observations: using ASP for function search with

a 600 second time limit, and using C++ for function search with 600 and 3 600 seconds of time

limit. See Tables 6.1, 6.2, and A.1 for more details.

Results show when only functional corruptions are considered (type F corruptions), the

model revision approach is able to repair all the models under the time limit of 600 seconds.

Moreover, the average solving time is under 1 second. Timeouts begin to occur when topological

corruptions are considered, i.e. corruptions of type E, R, and A, which change the topology of

the network. Instances where new edges are added to the original model tend to take longer to

solve, leading to a higher number of timeouts, than the instances where edges are removed, as

shown in Tables 6.3 and 6.4. In general, when the number of unsolved instances increase, there

is a bigger difference between the average and the median solving times, where some models

quickly begin to have higher solving times. This phenomenon can also be observed in Figures

6.1 and 6.2.

75

Table 6.3: Results for model revision of FY, SP, TCR, MCC, and Th, under stable state observations using ASP for function repair search. F%,
E%, R%, and A% are the probabilistic parameters used to change the original models. Average (Avg.) and median (Med.) times, in seconds, of
the solved instances. #TO is the number of timeouts out of 100 considering a time limit of 600 seconds.

(%) FY SP TCR MCC Th

F E R A Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO

5 0 0 0 0,036 0,028 0 0,035 0,030 0 0,044 0,037 0 0,019 0,016 0 0,031 0,031 0

25 0 0 0 0,043 0,041 0 0,057 0,056 0 0,054 0,053 0 0,022 0,016 0 0,047 0,047 0

50 0 0 0 0,055 0,045 0 0,084 0,083 0 0,067 0,064 0 0,030 0,027 0 0,076 0,076 0

100 0 0 0 0,073 0,058 0 0,138 0,136 0 0,102 0,099 0 0,041 0,035 0 0,133 0,129 0

0 5 0 0 0,352 0,051 7 30,018 0,686 2 0,137 0,041 0 0,049 0,014 0 3,900 0,046 5

0 10 0 0 1,919 0,098 19 66,462 21,577 18 0,238 0,056 0 1,099 0,034 0 18,742 0,099 9

0 15 0 0 4,567 0,157 31 86,897 32,201 28 0,312 0,090 0 4,198 0,064 0 34,991 0,187 14

0 20 0 0 8,014 0,186 43 99,264 34,315 54 0,407 0,127 0 9,901 0,108 2 41,761 0,235 20

0 25 0 0 10,355 0,378 49 108,946 43,391 65 0,445 0,599 0 20,201 0,183 2 54,127 0,597 27

0 50 0 0 26,150 10,956 82 515,652 515,652 99 0,700 0,713 0 130,428 79,366 20 124,088 1,606 55

0 75 0 0 16,091 0,409 97 100 1,001 0,874 0 227,534 221,829 82 150,014 21,866 85

0 0 1 0 0,171 0,034 6 1,845 0,034 4 2,826 0,031 0 0,014 0,010 0 1,235 0,018 3

0 0 5 0 0,427 0,049 14 4,638 1,192 15 12,044 0,038 0 0,016 0,011 0 3,537 0,371 7

0 0 10 0 0,833 0,091 20 10,554 2,526 25 14,046 0,061 0 0,018 0,011 0 3,665 0,414 10

0 0 15 0 0,895 0,109 27 11,126 3,037 30 20,102 5,329 0 0,018 0,011 0 5,458 0,807 11

0 0 0 1 0,584 0,036 0 22,019 0,451 23 5,589 0,101 0 0,048 0,011 0 0,411 0,050 13

0 0 0 5 22,414 0,383 5 107,806 6,329 76 70,951 3,268 57 0,628 0,036 1 60,581 0,590 68

0 0 0 10 25,627 3,169 18 377,806 416,840 97 4,400 4,400 98 4,749 0,227 3 133,721 16,471 93

0 0 0 15 53,629 3,522 34 - - 100 - - 100 7,255 0,281 7 100

25 5 0 0 0,169 0,057 11 18,438 0,289 5 0,163 0,063 0 0,042 0,025 0 0,833 0,066 7

50 25 0 0 13,936 0,767 31 123,227 86,083 65 0,589 0,302 0 31,957 0,229 3 23,477 0,419 24

100 50 0 0 33,740 7,280 69 229,134 269,408 93 0,874 0,941 0 97,079 39,688 30 44,347 2,021 56

5 25 5 5 11,651 0,806 53 142,766 62,721 97 33,351 2,712 82 39,836 0,610 14 86,067 10,743 72

10 10 5 5 7,927 0,490 33 108,483 31,067 87 37,640 3,872 76 7,178 0,124 7 62,835 1,868 69

76

Table 6.4: Results for model revision of FY, SP, TCR, MCC, and Th, under stable state observations using C++ for function repair search. F%,
E%, R%, and A% are the probabilistic parameters used to change the original models. Average (Avg.) and median (Med.) times, in seconds, of
the solved instances. #TO is the number of timeouts out of 100 considering a time limit of 600 seconds.

(%) FY SP TCR MCC Th

F E R A Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO

5 0 0 0 0,021 0,021 0 0,022 0,022 0 0,032 0,033 0 0,010 0,011 0 0,014 0,014 0

25 0 0 0 0,021 0,022 0 0,022 0,023 0 0,031 0,032 0 0,011 0,011 0 0,014 0,014 0

50 0 0 0 0,021 0,021 0 0,023 0,024 0 0,033 0,034 0 0,011 0,010 0 0,014 0,014 0

100 0 0 0 0,021 0,021 0 0,026 0,027 0 0,034 0,035 0 0,010 0,009 0 0,015 0,015 0

0 5 0 0 9,922 0,023 5 2,368 0,030 1 0,032 0,033 0 0,011 0,008 0 3,184 0,016 5

0 10 0 0 23,355 0,026 15 10,703 0,195 6 0,033 0,034 0 0,019 0,012 0 21,346 0,015 7

0 15 0 0 49,343 0,030 23 19,322 0,290 10 0,034 0,034 0 0,256 0,013 0 42,021 0,018 9

0 20 0 0 67,822 0,030 34 28,865 0,988 16 0,034 0,035 0 6,141 0,015 0 50,489 0,022 12

0 25 0 0 82,597 0,034 39 33,039 1,093 20 0,035 0,035 0 6,566 0,019 0 78,785 0,023 17

0 50 0 0 60,904 2,621 80 100,783 20,569 67 0,038 0,038 0 33,729 0,960 1 90,984 0,571 22

0 75 0 0 119,655 3,647 96 32,784 19,486 96 0,040 0,041 0 114,468 110,227 38 53,441 0,955 10

0 0 1 0 0,026 0,023 6 0,179 0,023 0 0,041 0,033 0 0,010 0,009 0 0,019 0,015 3

0 0 5 0 0,243 0,023 13 0,435 0,030 0 0,065 0,034 0 0,010 0,009 0 0,122 0,017 7

0 0 10 0 0,243 0,023 17 0,711 0,165 0 0,061 0,031 0 0,010 0,008 0 0,221 0,020 10

0 0 15 0 0,742 0,024 18 0,759 0,129 0 0,085 0,055 0 0,010 0,009 0 0,266 0,020 11

0 0 0 1 0,043 0,024 0 2,673 0,035 11 0,053 0,036 0 0,010 0,009 0 2,702 0,017 2

0 0 0 5 7,533 0,046 0 24,186 16,020 36 31,402 0,959 29 3,559 0,012 0 27,395 1,375 40

0 0 0 10 21,785 0,146 6 69,102 21,879 87 146,019 47,995 87 3,919 0,016 0 93,597 25,672 72

0 0 0 15 35,451 0,213 12 216,824 216,824 99 - - 100 6,247 0,020 0 183,331 261,087 97

25 5 0 0 23,203 0,025 6 2,913 0,029 1 0,034 0,034 0 0,011 0,010 0 6,270 0,018 6

50 25 0 0 76,736 0,034 20 30,432 1,183 31 0,037 0,037 0 4,807 0,022 0 57,293 0,023 6

100 50 0 0 185,835 7,146 51 87,609 31,990 54 0,044 0,044 0 32,196 2,097 3 59,685 1,604 20

5 25 5 5 42,181 0,219 36 87,096 28,554 86 16,517 0,387 61 8,092 0,035 5 61,837 1,302 46

10 10 5 5 34,585 0,045 16 29,215 6,134 64 29,280 1,854 35 0,839 0,016 2 33,992 1,252 42

77

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000

T
im
e
 (
s
)

Instances

MCC
FY
SP

TCR
Th

Figure 6.1: Time in seconds of solved instances for each model, under stable state observations,
using ASP for function search.

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000

T
im
e
 (
s
)

Instances

MCC
FY
SP

TCR
Th

Figure 6.2: Time in seconds of solved instances for each model, under stable state observations,
using C++ for function search.

78

Table 6.5: Number of solved and unsolved instances under stable state observations, considering
different approaches for function repair operations search (Function search) and different time
limits in seconds. A total of 12 000 instances are considered.

Function Search Time Limit (s) Solved Instances Unsolved Instances

ASP 600 8 936 3 064

C++ 600 10 017 1 983

C++ 3 600 10 718 1 282

6.2.2 Time-series Observations

The proposed model revision approach is also evaluated by confronting corrupted models

with time-series observations. We consider confronting each model with only one observation

and with five observations simultaneously. Different sizes of time-series observations are also

considered, having three and twenty time steps. Additionally, when confronting a model with

the corresponding set of time-series observations, both synchronous and asynchronous update

schemes are considered. Note that the time-series observations are consistent with the corre-

sponding original models. A time limit of 3 600 seconds is considered in these experiments.

Table 6.6 shows the results obtained for each model considering different update schemes,

one and five observations of three and twenty time steps. The average and median solving times

are also shown, as well as the percentage of solved instances, considering 2 400 instances per

entry. More detailed results considering time-series observations are presented in Appendix A,

in which results are separated by model corruption operations (e.g. see Tables A.4 and A.5).

Results in Table 6.6 show that increasing the number of observations or the number of time

steps, the solving time increases and the number solved instances decreases. Table 6.6 also shows

that the number of solved instances is higher considering the asynchronous update scheme than

the synchronous update scheme. Considering the asynchronous update scheme, 91, 82% of the

instances were solved, and considering the synchronous update scheme, 76, 84% of the instances

were solved, under the time limit defined.

Figure 6.3 shows the solving times for each model when confronted with five time-series

observations with twenty time steps under a synchronous update scheme. Results clearly show

that more connected networks, i.e. networks with a higher ratio of edges per node, tend to take

longer to solve and have a higher number of unsolved instances. In fact, ordering the models by

the ratio of edges per node in non increasing order, we obtain: MCC, SP, FY, Th, and TCR.

This order can be seen in the results shown in Figure 6.3

79

Table 6.6: Results for model revision of FY, SP, TCR, MCC, and Th, under time-series observations. Median (Med.) and average (Avg.) solving
times in seconds for each model considering: synchronous (S) and asynchronous (A) dynamics; 1 and 5 observations (Obs.); and 3 and 20 time steps
(T.S.). The percentage of solved instances (%) consider a total of 2 400 instances for each table entry.

U
p

d
at

e

O
b
s.

T
.S

. FY SP TCR MCC Th
Time (s) Solved Time (s) Solved Time (s) Solved Time (s) Solved Time (s) Solved

Avg. Med. (%) Avg.. Med. (%) Avg. Med. (%) Avg. Med. (%) Avg. Med. (%)

S
1

3 224,193 0,017 95,63 59,863 0,023 67,08 26,180 0,028 87,54 15,867 0,019 94,67 95,654 0,021 84,04
20 325,370 0,044 90,75 63,700 0,068 66,79 29,726 0,087 86,46 40,412 0,052 59,71 62,861 0,055 82,88

5
3 413,305 0,132 85,08 63,765 0,070 58,38 185,533 0,104 79,79 466,870 0,242 80,29 34,372 0,112 76,54
20 382,021 0,506 82,54 72,647 0,772 53,38 104,566 0,656 78,96 277,921 0,640 53,04 28,779 0,661 73,33

A
1

3 16,724 0,023 99,88 0,032 0,031 100,00 4,124 0,040 96,54 0,040 0,024 99,96 1,242 0,029 99,29
20 230,888 0,538 94,83 38,453 0,748 88,67 19,126 0,880 91,50 5,545 0,569 99,50 66,106 0,509 88,75

5
3 17,735 0,300 99,50 7,233 0,436 99,04 11,407 0,527 93,42 16,014 0,317 95,13 22,963 0,313 95,17
20 254,957 16,086 94,54 240,310 28,287 48,42 138,833 28,545 91,33 93,915 17,216 77,88 50,362 16,535 83,04

80

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000

T
im
e
 (
s
)

Instances

MCC
FY
SP

TCR
Th

Figure 6.3: Time in seconds of solved instances for each model, confronted with five time-series
observation of twenty time steps, under the synchronous update scheme.

Figure 6.4 shows a comparison between the FY and MCC models when confronted with five

time-series observations with twenty time steps, under synchronous and asynchronous update

schemes. It is shown that less MCC instances are solved (and higher solving times) than the

instances of the FY model, which is a less connected model than the MCC model. Moreover,

Figure 6.4 also shows that the results are better when considering the asynchronous update

scheme than the synchronous update scheme. Considering the asynchronous update scheme,

most of the instances of both models can be solved under ten seconds.

Figure 6.5 shows in detail the median solving times for the SP model when confronted with

five time-series observations with twenty time steps. These results show the median time per

corruption configuration (see Table 6.2) considering the synchronous update scheme. Figure

6.5 shows that the solving time increases when topological changes are performed as corruption

operations. The first five corruption configurations correspond to function changes (see Table

6.2), having the lowest median times, below one second.

More detailed results regarding time-series observations are presented in Appendix A. Graph-

ics comparing different number of observations and time steps for each model under both syn-

chronous and asynchronous update scheme are presented in Appendix A (e.g. see Figures A.1

and A.2).

81

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000

T
im
e
 (
s
)

Instances

FY sync
FY async
MCC sync
MCC async

Figure 6.4: Time in seconds of solved instances for FY and MCC models under synchronous and
asynchronous update schemes. Models are confronted with five different time-series observations
with twenty time steps.

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ti
m
e
(s
)

Quartiles Sync
Median Sync

Figure 6.5: Median time in seconds of solved instances of SP model under the synchronous
update scheme when confronted with five time-series observations with twenty time steps.

82

6.3 Discussion

The results presented in Section 6.2 shed a light on the impact of several characteristics in

the presented model revision approach.

Impact of the type of corruption

Different types of corruption operations are applied to the original models in order to test

the ability of the presented approach to revise the corrupted models. Topological corruptions,

i.e. changing the sign of the edges, removing edges and adding edges, to the models take

more time to solve. In particular, when new regulators are added, the number of unsolved

instances is very high, having configurations in which no instance could be solved under the

time limit defined. This happens because by increasing the number of regulators, we increase

the dimension of the corresponding regulatory function. Given the optimisation criterion defined

for the search of repair operations, the function repair search is the first to be performed. As

the number of monotone non-degenerate Boolean functions increases with the dimension of

the function (see Table 4.1), the search space for function repair increases when we add new

regulators as a corruption operation. Therefore, the solving time increases when new edges are

added. Moreover, when searching for possible repair operations, we first search for function

repair operations, then we search for possible changes in the sign of the edges, and finally

consider addition or removal of edges as repair operations. When considering changing the sign

of an edge, or adding or removing edges, the search for possible consistent Boolean functions

must be performed again, evidencing the impact that the addition of new edges (as a corruption

operation) has on the solving time of the proposed approach.

When the original models are corrupted by only changing the signs of edges, we observe an

increasing number of unsolved instances and solving times. We observe that when the signs of

edges are changed, most of the inconsistencies (when present) are double inconsistencies, i.e.

inconsistent nodes in which the corresponding regulatory function should be more generic and

more specific at the same time (see Section 5.1.2 for details). This means that, if a consistent

regulatory function exists, is not comparable with the original function, forcing a complete

search of the function space. Considering the whole space of Boolean functions translates to

higher solving times and consequently, higher number of unsolved instances considering the time

limits defined (3 600 seconds). These results show that the impact that the complete search of

possible function repairs has on the efficiency of the presented model revision approach, justifies

the choice of implementing and using by default the near optimal search for function repairs

whenever possible. This choice revealed to be efficient, and the results show that the majority

83

of the instances can be solved under 60 seconds.

The impact that the type of corruption has on the model revision process can be verified by

the results shown in Figure 6.5, in which the solving time increases when considering topological

changes in the original model (see Table 6.2).

Solving time analysis

There is a difference of the average and median times of solved instances of most of the

experimental results, where the average is higher than the median. This means that most

instances have a lower solving time than the average time. In fact, Figures 6.1, 6.2 and 6.3 show

precisely that the solving time is mostly lower for the majority of the instances and the solving

time quickly grows for the remaining few instances. This can be observed when the time limit is

increased from 600 seconds to 3 600 seconds under stable state observations, where the number

of solved instances only increases 7%. With a 600 seconds time limit there are 10 017 solved

instances, whereas with 3 600 seconds time limit there are 10 718 solved instances (see Table

6.5).

Model characteristics

The connectivity of the model plays a significant role in the model revision process. More

connected models, i.e. models with higher ratio of edges per node, typically have regulatory

functions of higher dimension, leading to higher solving times. This fact can be seen in Figures

6.2, 6.3, and 6.4. A higher function dimension leads to a bigger search space for function repairs,

and therefore, less solved instances under the predefined time limit. For example, comparing

the solving times of MCC with FY (Figure 6.4), we can verify that the former has higher solving

times. In fact, both MCC and FY models have 10 nodes, but FY only has 27 edges whereas MCC

has 35 edges, making MCC a more connected model (see Table 6.1). The same phenomenon

can be verified by comparing the SP with the TCR model (Figure 6.3). Both models have 57

edges, but SP has 19 nodes whereas TCR has 40 nodes, making SP a more connected model

and, therefore, with higher solving times (considering the same number of observations).

Impact of the number of observations

Taking a closer look at Figure 6.2, the solving time decreases with less connected models,

with the exception of the MCC model. The MCC model is not the model with the lowest ratio of

edges per node, however, is the model with lower solving times under stable state observations.

This happens because MCC only has one stable state observation, whereas the other models have

multiple stable states. This indicates that the number of observations plays a significant role on

84

the efficiency of the model revision procedure. The same behaviour can be verified by the results

showed in Table 6.6. Each observation represents a constraint on the model behaviour when

searching for repair operations in case of inconsistency. The higher the number of observations,

the higher the number of constraints over the model. Therefore, with an increasing number of

observations there is a higher probability of the necessity of a higher number of repair operations

to render an inconsistent model consistent. This leads to increasing solving times. Moreover,

considering time-series observations, not only the number of solved instances decreases with an

increase in the number of observations, but also with an increase in the number of time-steps,

as shown in Table 6.6. The reason behind these results is the same: each time-step represents a

constraint over the model behaviour.

Comparing ASP and C++ approach for function search

Two different approaches are presented to compute parents and children of monotone non-

degenerate Boolean functions, used in the search of function repair operations: one in ASP

and another in C++ (see Section 4.2). Both approaches are considered under stable state

observations, as shown in Table 6.3 and Figure 6.1 (ASP), and Table 6.4 and Figure 6.2 (C++).

Results show that the C++ library developed for function search produces significantly better

times than the equivalent ASP approach. The average and median solving times using C++

(Table 6.4) are lower than using ASP (Table 6.3) in most scenarios. When the solving times

are not lower, there is an increase of solving instances (less number of timeouts). Therefore,

the C++ approach for function search solves instances faster and solves more instances. This

is due to the fact that in ASP all the possible instances of the defined predicates (see Section

4.2) are generated to compute a neighbour of a given function, and then a solution is computed

considering the defined ASP rules. Instantiating all the possibilities of variable-free predicates

has an exponential growth with the increase of the function dimension. Using a dedicated

procedure to compute parents and children of monotone non-degenerate Boolean functions,

avoiding the generation of all the possible combinations, results in a more efficient approach.

Comparing Figures 6.1 and 6.2, an interesting result is observed. Using ASP for function

search, model Th has higher solving times (and more timeouts) than the FY model, whereas

with the C++ approach the reverse happens. The FY model is a more connected model than

Th, and, considering stable state observations, FY has more observations, which justifies the re-

sults shown in Figure 6.2. However, using ASP for function search, the results are not consistent

with the expected behaviour, indicating that there is some underlying property influencing the

results. Looking closer to Tables 6.3 and 6.4, comparing models FY and Th, we can see that the

difference in solved instances (times and timeouts) is bigger in the Th model under corruption

85

configurations where only the sign of the edges are changed (E). In these configurations, consid-

ering the Th model, we are able to reduce the number unsolved instances by (approximately)

half, with the C++ approach. As mentioned before, in corruptions where only the sign of edges

are changed we tend to have nodes with double inconsistencies, which means that the whole

function space is considered in function repair search, having a greater impact on the model

revision approach. Although the Th model has on average regulatory functions with lower di-

mension than the FY model, as shown in Table 6.1, the repair search is slower in the Th model

using ASP, contrary to what would be expected. The Th model is bigger than the FY, i.e. has

more nodes, which leads to more inconsistent nodes upon corruption, which in turn leads to more

function repair searches during the model revision procedure. The obtained results indicate that

whenever there are more functions searches and the complete function space is considered, the

ASP approach suffers a greater impact. Thus the discrepancy in the results shown in Figure 6.1

in which the Th model has bigger solving times than the FY model. Moreover, comparing the

FY with the Th model, the number of unsolved instances (considering a 600 seconds timeout)

of FY and Th using ASP are 649 and 748, respectively, and considering the C++ approach

for function search the number of unsolved instances are 493 and 444, respectively. We have

a bigger reduction in the number of unsolved instances in the Th model when considering the

C++ approach. Moreover, the median solving time of the 304 extra instances that we are able

to solve is 28, 060 seconds, indicating that most of these instances can be solved quickly.

Synchornous vs. asynchronous update scheme

When considering time-series observations, Table 6.6 clearly shows that the model revision

approach performs better under the asynchronous update scheme than under the synchronous

update scheme. This is due to the fact that the synchronous update scheme has more restrictions,

since all the regulatory functions must produce the expected value of the corresponding node

at every time step. Considering that we have one inconsistent node, with five observations and

twenty time steps, in the synchronous update scheme, (5 × 20 =) 100 verifications must be

performed when repairing that node. On the other hand, in the asynchronous update scheme,

for each time step only one node is updated, and therefore only that node must be verified,

leading to considerably less verifications when repairing an inconsistent node. In fact, when

considering the asynchronous update scheme with one observation with three time steps, which

represents the least amount of restrictions considered in the model revision process, results show

that many corrupted model instances are consistent with the observation.

86

Solutions quality

Analysing the repair sets of operations produced by our model revision approach, we verified

that in the majority of the instances, the number of repair operations produced in a solution is

equal or less than the number of operations applied to corrupt the original model. The instances

where the number of repair operations is higher than the number of operations to corrupt the

original model are justified by the optimisation criterion defined (see Section 5.1). For example,

if, to corrupt a model, one corruption operation is applied by adding one new edge, there might

be a solution where three repair operations are produced: changing a function and changing the

sign of two edges. In fact, by adding a new edge (as a corruption operation), we are increasing

the function dimension, being likely to find a consistent function, even if changing the sign of

edges is necessary. The ideal reverse operation of the example to repair the model would be to

remove the added edge (one operation). However, following the defined optimisation criterion, a

solution with one function change and two signs of the edge flipped (three operations) is better

than a solution with one remove operation, and therefore it is the solution produced by the

presented model revision approach. With the presented optimisation criterion, changing the

structure of the model is preferred to be avoided whenever possible.

The optimisation criterion of repair operations considered takes into account the construc-

tion process of the Boolean logical models, where it is assumed that there is a higher level of

confidence in the correctness of the topology of the model, than in the correctness of the regula-

tory functions. Therefore, when searching for repair operations, the process starts with function

repair searches. Note that instances where only topological corruptions are applied, are against

the above assumption, and therefore may lead to unideal solutions. However, such instances

are considered in order to evaluate the impact of the different corruption types in the proposed

model revision approach. Nevertheless, optimal solutions are found taking into account the opti-

misation criterion, compliant with the assumption that the most probable incorrect components

of a model are the regulatory functions.

87

88

Chapter 7

Conclusions

In this work, a model revision procedure capable of repairing Boolean logical models is

presented, considering stable state and time-series observations. It verifies the consistency of a

model with a set of observations and, in case of inconsistency, all optimal sets of possible repair

operations are produced which render the model consistent. In the model revision procedure,

four repair operations are considered:

• Change regulatory function;

• Change the type of an interaction;

• Remove a wrong regulator;

• Add a missing regulator.

To the best of our knowledge, this approach is the only one considering these four types

of repair operation simultaneously. Moreover, when searching for function repair operations,

the impact that changing a function has in the networks dynamic is considered. To select

optimal solutions, a lexicographic optimisation criterion that takes into consideration the model

construction process, being an innovative approach, is defined as follows:

1. Minimise the number of add/remove edge operations;

2. Minimise the number of flip sign of an edge operations;

3. Minimise the number of function change operations.

The method is successfully tested using several well-known biological models. Corrupted

versions of the original models are generated in order to assess if the proposed procedure is able

to determine if a corrupted model is consistent with a given set of observations, and in case of

89

inconsistency, if the procedure is able to repair it. To evaluate the model revision approach under

stable state observations, the stable states of the corresponding original models are considered.

Different time-series data, consistent with the original models, are also generated in order to

evaluate the presented procedure under time-series observations, considering both synchronous

and asynchronous update schemes. The model revision approach is able to repair most of the

corrupted models in less than one second.

We conclude that the degree of connectivity of the model plays a big role in the model revision

procedure. More connected models, i.e. models with a higher ratio of edges per nodes (likely

having regulatory functions with higher dimensions), take longer to repair. Moreover, the type

of corruption also influences the model revision procedure. For models where the corruption led

to repairs considering the addition or removal of regulators, the repair time increased, due to

the change of the function space and subsequent search of a compatible function.

With this model revision method, we conclude that the dimension of the regulatory functions

has the biggest impact on the performance, since the search space of function repair increases

exponentially with the number of regulators.

When comparing different update schemes of the model dynamics, the synchronous update

scheme has more restrictions than the asynchronous update leading to higher solving times. This

is due to the fact that, in the synchronous case, all the regulatory functions must produce the

expected values at every time step. In the asynchronous update, only one regulatory function is

applied at each time step, and therefore only the updated function must produce the expected

value at each time step.

With this work, we are able to repair Boolean logical models of biological regulatory networks

considering stable state and time-series observations, and both synchronous and asynchronous

update schemes for the model dynamics.

7.1 Contributions

During the development of this work, relevant contributions for the Computer Science and

Bioinformatics communities were created. The modelling of Boolean logical models of biological

regulatory networks using ASP is presented in “Model Revision of Logical Regulatory Networks

Using Logic-Based Tools” [102]. In this paper it is also presented an initial version of the ASP

program for the consistency check procedure under stable state observations described in Section

4.1. The paper was presented in the Doctoral Consortium of the 34th International Conference on

Logic Programming (ICLP 2018), allowing to validate the work and getting important feedback

for the work that followed.

90

A first approach of the model revision method under stable state observations is described

in “Model Revision of Boolean Regulatory Networks at Stable State” [103], presented in the 15th

International Symposium on Bioinformatics Research and Applications (ISBRA 2019). This

work validated the model revision approach, shedding light on the impact that the degree of

connectivity of a model has on solving time.

A detailed study of monotone non-degenerate Boolean functions, in particular the search of

consistent function repairs, is presented in “Revision of Boolean Models of Regulatory Networks

Using Stable State Observations” in the Journal of Computational Biology [104]. The presented

methods for function repair search improved the previous work, allowing us to compute optimal

or near-optimal solutions. Since the search for function repairs has the greatest impact on the

model revision process, being able to compute near-optimal solutions is of great importance.

The model revision procedure of Boolean logical models when confronted with time-series

observations is described in “Semi-automatic model revision of Boolean regulatory networks:

confronting time-series observations with (a)synchronous dynamics” [105]. The paper presents

the consistency check procedure in ASP considering the dynamic behaviour under synchronous

and asynchronous update schemes, and the search method for repair operations under time-series

observations in case of inconsistency.

This work culminated in the development of the command line tool ModRev presented

in “ModRev - Model Revision Tool for Boolean Logical Models of Biological Regulatory Net-

works” [106] in the International Conference on Computational Methods in Systems Biology

(CMSB 2020). The ModRev tool is freely available online1. ModRev is capable of con-

fronting Boolean logical models with either stable state or time-series observations and assess

whether the model is consistent. In case of inconsistency, the tool searches for possible repair

operations, and all the optimal sets of repair operations are produced. When considering time-

series observations, both synchronous and asynchronous update schemes are supported. The

tool allows the user to control some parameters in the search of function repairs, improving

efficiency at the cost of possibly loosing some optimal solutions. Moreover, the user is able

to prevent some repair operations to be considered, having some control in the model revision

process (see Section 5.2).

1https://filipegouveia.github.io/ModelRevisionASP/

91

https://filipegouveia.github.io/ModelRevisionASP/

7.2 Discussion and Future Work

Repair Sets

Our proposed approach may produce multiple solutions, which can be overwhelming for the

user. Heuristics to filter the produced output could be considered, in particular those proposed

by Merhej et al. [19] where rules of thumb are discussed. These rules are based on expert

knowledge and properties found in literature, such as the number of edges, or the diameter of

a network, and can be used to narrow down the number of solutions presented by our model

revision approach.

Regulatory Functions

In this work we consider that the regulatory functions are defined as monotone non-degenerate

Boolean functions. The domain of Boolean functions considered has a biological meaning. Mono-

tone Boolean functions are functions where each regulator only has one role, either an activator,

or an inhibitor, but not both. In non-degenerate functions every regulator affects in some way

the output of the regulatory function, otherwise it should not be considered a regulator. De-

spite the biological meaning, restricting the domain of Boolean functions may lead to undesired

results. Considering degenerate Boolean functions means that functions can be defined with

unnecessary variables that do not affect the output of the function, and can be simulated by

adding or removing regulators which our method supports. However, it would be possible to

consider degenerate functions, for which the Hasse diagram is well defined, in our search for func-

tion repairs by adapting the rules to compute neighbours of a function (see Section 2.2). This

approach may lead to solutions where regulatory functions are changed to degenerate functions,

suggesting that some regulators are not necessary and could be removed, without explicitly

search for topological repairs. However, with our approach we are not able to consider non-

monotone Boolean functions without changing the function repair search method. Moreover, we

rely on the properties of the family of monotone Boolean functions to consider the impact on

the networks dynamics when changing a regulatory function. Additionally, assuming that each

regulator can only have one role, in order to preserve the coherence between the topology of the

network and the regulatory functions, monotone functions must be considered.

Results showed that the dimension of the regulatory function has the biggest impact on

the performance of the model revision approach, since the search space of function repairs

increases exponentially with the number of regulators. Here, we show that using a near optimal

search of functions leads to very good results where the number of repair operations produced

are less than or equal to the number of operations performed to corrupt the model, and in

92

a few seconds/minutes. Nonetheless, an exhaustive search method for function repairs is also

implemented and available to the user.

Answer Set Programming

Two different implementations of the function search process are developed, one in ASP

and another in C++. With the results, we conclude that for the C++ approach performs

better than the ASP approach. In fact, in combinatorial problems, like the computation of

monotone Boolean functions neighbours, where not all the possible combinations are necessary

to be considered and there are well defined rules to generate only the necessary combinations,

results indicate that a dedicated procedure performs better than an ASP approach. Logic-

based approaches such as ASP consider all possible solution combinations and use defined rules

to cut or discard impossible solutions. However, in combinatorial problems where all possible

combinations should be considered, such as the consistency check procedure presented, an ASP

approach revealed to perform well, allowing the inference of additional useful information.

For the consistency check procedure, the ASP program developed revealed to be suitable,

leading to good results. However, it would be interesting, as future work, to consider different

logic-based approaches such as Boolean Satisfiability (SAT), or Satisfiability Modulo Theories

(SMT), which have already been applied in the context of biological regulatory networks [17,

72, 107].

Stable State and Time-series Observations

The proposed model revision approach is able to confront a Boolean logical model with a

set of time-series observations, considering both synchronous and asynchronous update scheme.

It is considered that the simulation time of the time-series observations is known. Moreover, it

is assumed that two consecutive observations require only one transition (time step). However,

this may not be realistic. It is desired to be able to consider that between two consecutive

observations there can be any number of intermediate transitions. However, this would require

the consideration of exponentially long trajectories. To overcome this, an iterative approach

could be considered, with a higher number of intermediate transitions at each passing iteration.

Although an upper bound can be defined, being the number of all possible network states,

this approach may be inefficient for large networks, since to compute optimal solutions, all the

possibilities must be considered. If a lower upper bound is to be considered, it could potentially

lead to false conclusions.

In this work we are only able to consider either a set of stable state observations, or a set of

time-series observations, but not both simultaneously. As future work, we intend to be able to

93

address this limitation, considering mixed sets of observations. To do so, the consistency check

procedure must be adapted, as well as the verification process of the possible repair operations.

Regarding time-series observations, both synchronous and asynchronous update schemes are

supported. For the asynchronous update scheme, we consider that only one regulatory function

is updated at each time step. As future work we intend to be able to support fully asynchronous

update scheme, in which any number (at least one) of regulatory functions can be updated at

each time step. An experimental approach for the fully asynchronous update scheme is already

implemented in the presented ModRev tool.

Optimisation

In this work several optimisation criteria are considered in order to revise a Boolean log-

ical model. In the model revision process, a consistency check procedure is considered firstly

to determine whether a given model is consistent when confronted with a set of observations.

When repairing a model, we desire to affect the least amount of nodes, and therefore, in case

of an inconsistent model, the consistency check procedure determines the minimum set(s) of

inconsistent nodes. Although this optimisation directive is compliant with the assumption that

we want to change the least amount of components in the model, it may lead to non optimal

solutions considering the optimisation criterion defined for the search of repair operations. For

example, the consistency check procedure may consider two solutions: one with one inconsistent

node; and another with two inconsistent nodes. Only the former is considered to the search of

repair operations as it has the minimum number of inconsistent nodes. However, the solution

with one inconsistent node may lead to a repair solution containing three repair operations,

including topological changes, whereas the solution with two inconsistent nodes (if it were con-

sidered), could lead to a repair solution comprising only two repairs (function changes). This

latter case is better then the former considering the optimisation criterion defined, however is

never considered due to the optimisation directive in the consistency check procedure. It would

be interesting to consider different optimisation directives in the consistency check procedure,

or to be able to provide the user the option to ignore such directives, allowing the possibility of

different solutions.

Besides the optimisation directive to minimise the number of inconsistent nodes in the con-

sistency check procedure, there are other optimisations relative to the number of topological

errors and possible reasons of inconsistency (see Section 4.1). These directives may also conceal

possible repair solutions, and therefore we consider, as future work, allowing to disable such

directives, or even defining different directives, in order to overcome this limitation.

94

Experimental Evaluation

In this work we consider five well-known biological models with different characteristics to

evaluate our model revision approach. Although the evaluation process allows to understand

the impact of some characteristics of the models and observations on the model revision process,

further studies can be made. Considering increasingly bigger networks would allow us to verify

the scalability and limitation of our approach. We expect that the size of the network would

greatly impact the approach performance (considering a fixed connectivity ratio of the networks).

In fact, we expect that with very large networks, it would be either fast to repair it or it would

take too much time. If the inconsistency is in a regulatory function of relatively small dimension,

it should be fast to find a solution. However, if topological changes are necessary, considering the

addition of missing regulators, with increasingly large networks there is a exponential explosion

of the repair search space, not only with the combinations of possible additions, but also in

the corresponding function space. If this model revision process is not able to repair such large

networks, we could consider smaller portions of the network at a time, repairing them separately,

considering a compositional approach. However, this may lead to non optimal solutions, or it

could even be impossible to find a solution.

In the experimental evaluation presented, we consider complete time-series observations. We

desire to conduct further studies considering incomplete observations, to understand the impact

of the number of missing values in our model revision approach. We expect that, with an increase

of the number of missing values, the time spent on the consistency check procedure will increase.

This is due to the exponential growth of the number of possible combinations of assignments of

the missing values. However, intuitively we expect that with an increasing number of missing

values, the number of inconsistent nodes would decrease, making the search for repair operations

faster. In the extreme end, where all the values are missing, any model would be consistent, as

any dynamic behaviour is compatible with an empty observation.

We would also want to confront our model revision approach with bigger time-series obser-

vations. Here we considered observations with twenty time steps. This is particularly relevant

in the asynchronous update scheme, where the current results show that our approach solves

most of the instances under the defined time limit (3 600 seconds). Considering an increasing

number of time steps will allow us to determine possible limitations of the proposed approach.

ModRev Tool

There are several tools in Systems Biology that operate over logical models. It is of great

interest being able to combine the use of several tools. However, ModRev uses an input

format based on ASP predicates. Although this is a simple format, it does not facilitate the

95

interoperability with other tools. To overcome this difficulty, we plan to integrate our format in

the Logical Qualitative Modelling toolkit [108].

Moreover, it would be interesting to develop a graphical user interface (GUI) for the ModRev

tool, since currently can only be used as a command line tool. This would facilitate the use

of our tool by modellers or biological experts, that are not familiar with command line tools.

Complementary, we could integrate it in the CoLoMoTo Interactive Notebook [109].

Final Thoughts

Although our model revision approach was designed for biological regulatory networks, it

can be used in different contexts. In fact, the procedure was designed to repair inconsistent

Boolean logical models, therefore it can be applied to different problems that can be represented

as a Boolean logical model. However, in this work we restricted the domain of the Boolean

functions to monotone non-degenerate Boolean functions, which may not be suitable in different

contexts. Moreover, the repair operations and optimisation criterion defined take into account

the construction process of biological regulatory networks. Under different contexts, it might be

necessary to adapt the set of repair operations or the optimisation criterion. One could easily

change the lexicographic order of the optimisation criterion, or even consider the same weight

for every repair operation, to be more suitable to different model revision contexts.

96

Bibliography

[1] G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory networks. Nature

Reviews Molecular Cell Biology, 9(10):770–780, Sept. 2008. doi: 10.1038/nrm2503.

[2] H. de Jong. Modeling and simulation of genetic regulatory systems: A literature

review. Journal of Computational Biology, 9(1):67–103, Jan. 2002. doi: 10.1089/

10665270252833208.

[3] R. Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical

Biology, 42(3):563–585, Dec. 1973. doi: 10.1016/0022-5193(73)90247-6.

[4] A. Siegel, O. Radulescu, M. Le Borgne, P. Veber, J. Ouy, and S. Lagarrigue. Qualitative

analysis of the relation between DNA microarray data and behavioral models of regulation

networks. Biosystems, 84(2):153–174, 2006.

[5] A. Naldi, P. T. Monteiro, C. Mussel, H. A. Kestler, D. Thieffry, I. Xenarios, J. Saez-

Rodriguez, T. Helikar, and C. C. and. Cooperative development of logical modelling

standards and tools with CoLoMoTo. Bioinformatics, 31(7):1154–1159, Jan. 2015. doi:

10.1093/bioinformatics/btv013.

[6] W. Abou-Jaoudé, P. Traynard, P. T. Monteiro, J. Saez-Rodriguez, T. Helikar, D. Thieffry,

and C. Chaouiya. Logical modeling and dynamical analysis of cellular networks. Frontiers

in Genetics, 7, May 2016. doi: 10.3389/fgene.2016.00094.

[7] G. Selvaggio, S. Canato, A. Pawar, P. T. Monteiro, P. S. Guerreiro, M. M. Brás,

F. Janody, and C. Chaouiya. Hybrid epithelial–mesenchymal phenotypes are controlled

by microenvironmental factors. Cancer Research, 80(11):2407–2420, Mar. 2020. doi:

10.1158/0008-5472.can-19-3147.

[8] N. Friedman. Inferring cellular networks using probabilistic graphical models. Science,

303(5659):799–805, 2004.

97

[9] C. Guziolowski, S. Videla, F. Eduati, S. Thiele, T. Cokelaer, A. Siegel, and J. Saez-

Rodriguez. Exhaustively characterizing feasible logic models of a signaling network using

Answer Set Programming. Bioinformatics, 29(18):2320–2326, July 2013. doi: 10.1093/

bioinformatics/btt393.

[10] M. Ostrowski, L. Paulevé, T. Schaub, A. Siegel, and C. Guziolowski. Boolean network

identification from perturbation time series data combining dynamics abstraction and logic

programming. Biosystems, 149:139–153, Nov. 2016. doi: 10.1016/j.biosystems.2016.07.009.

[11] S. Barman and Y.-K. Kwon. A Boolean network inference from time-series gene expression

data using a genetic algorithm. Bioinformatics, 34(17):i927–i933, 09 2018. ISSN 1367-4803.

doi: 10.1093/bioinformatics/bty584.

[12] S. Barman and Y.-K. Kwon. A neuro-evolution approach to infer a Boolean network from

time-series gene expressions. Bioinformatics, 36(Supplement 2):i762–i769, 2020.

[13] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving: From theory

to practice. Artificial Intelligence, 187-188:52–89, Aug. 2012. doi: 10.1016/j.artint.2012.

04.001.

[14] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer set solving in practice.

Synthesis Lectures on Artificial Intelligence and Machine Learning, 6(3):1–238, Dec. 2012.

doi: 10.2200/s00457ed1v01y201211aim019.

[15] A. Biere, M. Heule, and H. van Maaren. Handbook of satisfiability, volume 185. IOS press,

2009.

[16] M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and P. Veber.

Repair and prediction (under inconsistency) in large biological networks with Answer Set

Programming. In KR, 2010.

[17] J. Guerra and I. Lynce. Reasoning over biological networks using maximum satisfiability.

In Lecture Notes in Computer Science, pages 941–956. Springer Berlin Heidelberg, 2012.

doi: 10.1007/978-3-642-33558-7 67.

[18] C. E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change: Partial

meet contraction and revision functions. Journal of Symbolic Logic, 50(2):510–530, June

1985. doi: 10.2307/2274239.

98

[19] E. Merhej, S. Schockaert, and M. D. Cock. Repairing inconsistent answer set programs

using rules of thumb: A gene regulatory networks case study. International Journal of

Approximate Reasoning, 83:243–264, Apr. 2017. doi: 10.1016/j.ijar.2017.01.012.

[20] N. Mobilia, A. Rocca, S. Chorlton, E. Fanchon, and L. Trilling. Logical modeling and

analysis of regulatory genetic networks in a non monotonic framework. In Bioinformatics

and Biomedical Engineering, pages 599–612. Springer International Publishing, 2015. doi:

10.1007/978-3-319-16483-0 58.

[21] A. Lemos, I. Lynce, and P. T. Monteiro. Repairing Boolean logical models from time-series

data using Answer Set Programming. Algorithms for Molecular Biology, 14(1), Mar. 2019.

doi: 10.1186/s13015-019-0145-8.

[22] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze

expression data. Journal of Computational Biology, 7(3-4):601–620, 2000.

[23] D. T. Gillespie. The chemical Langevin equation. The Journal of Chemical Physics, 113

(1):297–306, July 2000. doi: 10.1063/1.481811.

[24] S. Kauffman. Homeostasis and differentiation in random genetic control networks. Nature,

224(5215):177, 1969.

[25] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic Boolean networks: a

rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2):261–274,

Feb. 2002. doi: 10.1093/bioinformatics/18.2.261.

[26] I. Shmulevich, E. Dougherty, and W. Zhang. From Boolean to probabilistic Boolean

networks as models of genetic regulatory networks. Proceedings of the IEEE, 90(11):1778–

1792, Nov. 2002. doi: 10.1109/jproc.2002.804686.

[27] M. Gebser, T. Schaub, S. Thiele, B. Usadel, and P. Veber. Detecting inconsistencies in

large biological networks with Answer Set Programming. In Logic Programming, pages

130–144. Springer Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-89982-2 19.

[28] L. Paulevé. Goal-oriented reduction of automata networks. In Computational Methods in

Systems Biology, pages 252–272. Springer International Publishing, 2016. doi: 10.1007/

978-3-319-45177-0 16.

[29] L. Pauleve. Reduction of qualitative models of biological networks for transient dynamics

analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15(4):

1167–1179, July 2018. doi: 10.1109/tcbb.2017.2749225.

99

[30] L. Paulevé, J. Kolčák, T. Chatain, and S. Haar. Reconciling qualitative, abstract, and

scalable modeling of biological networks. Nature Communications, 11(1), Aug. 2020. doi:

10.1038/s41467-020-18112-5.

[31] H. Klarner, A. Bockmayr, and H. Siebert. Computing maximal and minimal trap spaces

of Boolean networks. Natural Computing, 14(4):535–544, Oct. 2015. doi: 10.1007/

s11047-015-9520-7.

[32] A. Blake. Canonical expressions in Boolean algebra. In PhD Thesis, Department of

Mathematics. University of Chicago, 1938.

[33] Y. Crama and P. L. Hammer. Boolean functions: Theory, algorithms, and applications.

Cambridge University Press, 2011.

[34] J. E. Cury, P. T. Monteiro, and C. Chaouiya. Partial order on the set of Boolean regulatory

functions. arXiv preprint arXiv:1901.07623, 2019.

[35] I. Wegner. The critical complexity of all (monotone) Boolean functions and monotone

graph properties. Information and Control, 67(1-3):212–222, Oct. 1985. doi: 10.1016/

s0019-9958(85)80036-x.

[36] C. Baral. Knowledge representation, reasoning and declarative problem solving. Cambridge

university press, 2003.

[37] V. Lifschitz. What is Answer Set Programming? In Proceedings of the 23rd national

conference on Artificial intelligence-Volume 3, pages 1594–1597, 2008.

[38] V. Lifschitz. Answer Set Programming. Springer International Publishing, 2019. doi:

10.1007/978-3-030-24658-7.

[39] S. Chevalier, V. Noël, L. Calzone, A. Zinovyev, and L. Paulevé. Synthesis and simulation

of ensembles of Boolean networks for cell fate decision. In Computational Methods in

Systems Biology, pages 193–209. Springer International Publishing, 2020. doi: 10.1007/

978-3-030-60327-4 11.

[40] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In

ICLP/SLP, pages 1070–1080. MIT Press, 1988.

[41] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo= asp+ control: Prelimi-

nary report. arXiv preprint arXiv:1405.3694, 2014.

100

[42] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-shot ASP solving with

clingo. Theory and Practice of Logic Programming, 19(1):27–82, July 2018. doi: 10.1017/

s1471068418000054.

[43] M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances in gringo series 3. In Logic

Programming and Nonmonotonic Reasoning, pages 345–351. Springer Berlin Heidelberg,

2011. doi: 10.1007/978-3-642-20895-9 39.

[44] R.-S. Wang, A. Saadatpour, and R. Albert. Boolean modeling in systems biology: an

overview of methodology and applications. Physical Biology, 9(5):055001, Sept. 2012. doi:

10.1088/1478-3975/9/5/055001.

[45] A. Montagud, P. Traynard, L. Martignetti, E. Bonnet, E. Barillot, A. Zinovyev, and

L. Calzone. Conceptual and computational framework for logical modelling of biological

networks deregulated in diseases. Briefings in Bioinformatics, 20(4):1238–1249, Dec. 2017.

doi: 10.1093/bib/bbx163.

[46] C. Chaouiya, A. Naldi, and D. Thieffry. Logical modelling of gene regulatory networks

with GINsim. In Bacterial Molecular Networks, pages 463–479. Springer New York, Oct.

2011. doi: 10.1007/978-1-61779-361-5 23.

[47] G. Stoll, E. Viara, E. Barillot, and L. Calzone. Continuous time Boolean modeling for

biological signaling: application of Gillespie algorithm. BMC Systems Biology, 6(1):116,

2012. doi: 10.1186/1752-0509-6-116.

[48] G. Stoll, B. Caron, E. Viara, A. Dugourd, A. Zinovyev, A. Naldi, G. Kroemer, E. Bar-

illot, and L. Calzone. MaBoSS 2.0: an environment for stochastic Boolean modeling.

Bioinformatics, 33(14):2226–2228, Mar. 2017. doi: 10.1093/bioinformatics/btx123.

[49] A. Zinovyev, E. Viara, L. Calzone, and E. Barillot. BiNoM: a cytoscape plugin for ma-

nipulating and analyzing biological networks. Bioinformatics, 24(6):876–877, Nov. 2007.

doi: 10.1093/bioinformatics/btm553.

[50] E. Bonnet, L. Calzone, D. Rovera, G. Stoll, E. Barillot, and A. Zinovyev. BiNoM 2.0,

a cytoscape plugin for accessing and analyzing pathways using standard systems biology

formats. BMC Systems Biology, 7(1):18, 2013. doi: 10.1186/1752-0509-7-18.

[51] C. Müssel, M. Hopfensitz, and H. A. Kestler. BoolNet – an R package for generation,

reconstruction and analysis of Boolean networks. Bioinformatics, 26(10):1378–1380, 2010.

101

[52] C. Terfve, T. Cokelaer, D. Henriques, A. MacNamara, E. Goncalves, M. K. Morris, M. van

Iersel, D. A. Lauffenburger, and J. Saez-Rodriguez. CellNOptR: a flexible toolkit to train

protein signaling networks to data using multiple logic formalisms. BMC Systems Biology,

6(1):133, 2012. doi: 10.1186/1752-0509-6-133.

[53] P. L. Varela, C. V. Ramos, P. T. Monteiro, and C. Chaouiya. EpiLog: A software for the

logical modelling of epithelial dynamics. F1000Research, 7, 2018.

[54] A. J. Butte and I. S. Kohane. Mutual information relevance networks: functional genomic

clustering using pairwise entropy measurements. In Biocomputing 2000, pages 418–429.

World Scientific, 1999. doi: 10.1142/9789814447331 0040.

[55] A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Dalla Favera, and

A. Califano. ARACNE: an algorithm for the reconstruction of gene regulatory networks

in a mammalian cellular context. In BMC bioinformatics, volume 7. Springer, 2006.

[56] A. Lachmann, F. M. Giorgi, G. Lopez, and A. Califano. ARACNe-AP: gene network

reverse engineering through adaptive partitioning inference of mutual information. Bioin-

formatics, 32(14):2233–2235, 2016.

[57] P. E. Meyer, K. Kontos, F. Lafitte, and G. Bontempi. Information-theoretic inference

of large transcriptional regulatory networks. EURASIP journal on bioinformatics and

systems biology, 2007:1–9, 2007.

[58] K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, and A. Califano.

Reverse engineering of regulatory networks in human B cells. Nature genetics, 37(4):

382–390, 2005.

[59] W. Luo, K. D. Hankenson, and P. J. Woolf. Learning transcriptional regulatory networks

from high throughput gene expression data using continuous three-way mutual informa-

tion. BMC bioinformatics, 9(1):467, 2008.

[60] G. D. Tourassi, E. D. Frederick, M. K. Markey, and C. E. Floyd Jr. Application of the

mutual information criterion for feature selection in computer-aided diagnosis. Medical

physics, 28(12):2394–2402, 2001.

[61] G. Altay and F. Emmert-Streib. Inferring the conservative causal core of gene regulatory

networks. BMC systems biology, 4(1):132, 2010.

102

[62] R. Bonneau, D. J. Reiss, P. Shannon, M. Facciotti, L. Hood, N. S. Baliga, and V. Thorsson.

The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-

biology data sets de novo. Genome biology, 7(5):R36, 2006.

[63] D. Koczan, S. Drynda, M. Hecker, A. Drynda, R. Guthke, J. Kekow, and H.-J. Thiesen.

Molecular discrimination of responders and nonresponders to anti-TNFalpha therapy in

rheumatoid arthritis by etanercept. Arthritis research & therapy, 10(3):R50, 2008.

[64] M. G. Rabbat, M. A. Figueiredo, and R. D. Nowak. Network inference from co-occurrences.

IEEE Transactions on Information Theory, 54(9):4053–4068, 2008.

[65] I. M. Ong, J. D. Glasner, and D. Page. Modelling regulatory pathways in E. coli from

time series expression profiles. Bioinformatics, 18(suppl 1):S241–S248, 2002.

[66] J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. Advances to Bayesian

network inference for generating causal networks from observational biological data. Bioin-

formatics, 20(18):3594–3603, 2004.

[67] A. J. Hartemink, D. K. Gifford, T. S. Jaakkola, and R. A. Young. Using graphical models

and genomic expression data to statistically validate models of genetic regulatory networks.

In Biocomputing 2001, pages 422–433. World Scientific, 2000.

[68] M. I. Davidich and S. Bornholdt. Boolean network model predicts cell cycle sequence of

fission yeast. PLoS ONE, 3(2):e1672, Feb. 2008. doi: 10.1371/journal.pone.0001672.

[69] T. Fayruzov, J. Janssen, D. Vermeir, C. Cornelis, and M. D. Cock. Modelling gene and

protein regulatory networks with Answer Set Programming. International Journal of Data

Mining and Bioinformatics, 5(2):209, 2011. doi: 10.1504/ijdmb.2011.039178.

[70] S. Videla, C. Guziolowski, F. Eduati, S. Thiele, N. Grabe, J. Saez-Rodriguez, and A. Siegel.

Revisiting the training of logic models of protein signaling networks with ASP. In Com-

putational Methods in Systems Biology, pages 342–361. Springer Berlin Heidelberg, 2012.

doi: 10.1007/978-3-642-33636-2 20.

[71] T. Schaub, A. Siegel, and S. Videla. Reasoning on the response of logical signaling networks

with ASP. In Logical Modeling of Biological Systems, pages 49–92. John Wiley & Sons,

Inc., Aug. 2014. doi: 10.1002/9781119005223.ch2.

[72] C. Réda and B. Wilczyński. Automated inference of gene regulatory networks using explicit

regulatory modules. Journal of Theoretical Biology, 486:110091, Feb. 2020. doi: 10.1016/

j.jtbi.2019.110091.

103

[73] A. Mitsos, I. N. Melas, P. Siminelakis, A. D. Chairakaki, J. Saez-Rodriguez, and L. G.

Alexopoulos. Identifying drug effects via pathway alterations using an integer linear pro-

gramming optimization formulation on phosphoproteomic data. PLoS Computational Bi-

ology, 5(12):e1000591, Dec. 2009. doi: 10.1371/journal.pcbi.1000591.

[74] R. Sharan and R. M. Karp. Reconstructing Boolean models of signaling. Journal of

Computational Biology, 20(3):249–257, Mar. 2013. doi: 10.1089/cmb.2012.0241.

[75] T. Tamura and T. Akutsu. Detecting a singleton attractor in a Boolean network utilizing

SAT algorithms. IEICE Transactions on Fundamentals of Electronics, Communications

and Computer Sciences, E92-A(2):493–501, 2009. doi: 10.1587/transfun.e92.a.493.

[76] A. A. Melkman, T. Tamura, and T. Akutsu. Determining a singleton attractor of an

AND/OR Boolean network in time. Information Processing Letters, 110(14-15):565–569,

July 2010. doi: 10.1016/j.ipl.2010.05.001.

[77] A. Garg, I. Xenarios, L. Mendoza, and G. DeMicheli. An efficient method for dynamic

analysis of gene regulatory networks and in silico gene perturbation experiments. In

Research in Computational Molecular Biology, pages 62–76. Springer Berlin Heidelberg,

2007. doi: 10.1007/978-3-540-71681-5 5.

[78] A. Naldi, D. Thieffry, and C. Chaouiya. Decision diagrams for the representation and

analysis of logical models of genetic networks. In Computational Methods in Systems

Biology, pages 233–247. Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-75140-3

16.

[79] A. Garg, A. D. Cara, I. Xenarios, L. Mendoza, and G. D. Micheli. Synchronous versus

asynchronous modeling of gene regulatory networks. Bioinformatics, 24(17):1917–1925,

July 2008. doi: 10.1093/bioinformatics/btn336.

[80] A. Tiwari, C. Talcott, M. Knapp, P. Lincoln, and K. Laderoute. Analyzing pathways using

SAT-based approaches. In Algebraic Biology, pages 155–169. Springer Berlin Heidelberg,

2007. doi: 10.1007/978-3-540-73433-8 12.

[81] O. Ray, T. Soh, and K. Inoue. Analyzing pathways using ASP-based approaches. In

Algebraic and Numeric Biology, pages 167–183. Springer Berlin Heidelberg, 2012. doi:

10.1007/978-3-642-28067-2 10.

[82] E. Dubrova and M. Teslenko. A SAT-based algorithm for finding attractors in synchronous

104

Boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformat-

ics, 8(5):1393–1399, Sept. 2011. doi: 10.1109/tcbb.2010.20.

[83] T. Khaled and B. Benhamou. An ASP-based approach for attractor enumeration in syn-

chronous and asynchronous Boolean networks. Electronic Proceedings in Theoretical Com-

puter Science, 306:295–301, Sept. 2019. doi: 10.4204/eptcs.306.34.

[84] T. Khaled and B. Benhamou. An ASP-based approach for Boolean networks representation

and attractor detection. In LPAR, pages 317–333, 2020.

[85] E. Remy, B. Mosse, C. Chaouiya, and D. Thieffry. A description of dynamical graphs

associated to elementary regulatory circuits. Bioinformatics, 19(Suppl 2):ii172–ii178, Sept.

2003. doi: 10.1093/bioinformatics/btg1075.

[86] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking:

1020 states and beyond. Information and Computation, 98(2):142–170, June 1992. doi:

10.1016/0890-5401(92)90017-a.

[87] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.

[88] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model checking.

MIT press, 2018.

[89] P. Monteiro, W. Abou-Jaoudé, D. Thieffry, and C. Chaouiya. Model checking logical

regulatory networks. IFAC Proceedings Volumes, 47(2):170–175, 2014. doi: 10.3182/

20140514-3-fr-4046.00135.

[90] C. Baral, K. Chancellor, N. Tran, N. Tran, A. Joy, and M. Berens. A knowledge based

approach for representing and reasoning about signaling networks. Bioinformatics, 20

(Suppl 1):i15–i22, July 2004. doi: 10.1093/bioinformatics/bth918.

[91] L. Fippo Fitime, O. Roux, C. Guziolowski, and L. Paulevé. Identification of Bifurcations

in Biological Regulatory Networks using Answer-Set Programming. In Constraint-Based

Methods for Bioinformatics Workshop, Toulouse, France, Sept. 2016.

[92] L. F. Fitime, O. Roux, C. Guziolowski, and L. Paulevé. Identification of bifurcation

transitions in biological regulatory networks using Answer-Set Programming. Algorithms

for Molecular Biology, 12(1), July 2017. doi: 10.1186/s13015-017-0110-3.

[93] A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya. Dynamically consistent reduction of

logical regulatory graphs. Theoretical Computer Science, 412(21):2207–2218, May 2011.

doi: 10.1016/j.tcs.2010.10.021.

105

[94] J. G. T. Zañudo and R. Albert. An effective network reduction approach to find the

dynamical repertoire of discrete dynamic networks. Chaos: An Interdisciplinary Journal

of Nonlinear Science, 23(2):025111, June 2013. doi: 10.1063/1.4809777.

[95] H. Klarner, A. Bockmayr, and H. Siebert. Computing symbolic steady states of Boolean

networks. In Lecture Notes in Computer Science, pages 561–570. Springer International

Publishing, 2014. doi: 10.1007/978-3-319-11520-7 59.

[96] A. D. Korshunov. Monotone Boolean functions. Russian Mathematical Surveys, 58(5):

929–1001, Oct. 2003. doi: 10.1070/rm2003v058n05abeh000667.

[97] T. Stephen and T. Yusun. Counting inequivalent monotone Boolean functions. Discrete

Applied Mathematics, 167:15–24, Apr. 2014. doi: 10.1016/j.dam.2013.11.015.

[98] L. Sanchez, C. Chaouiya, and D. Thieffry. Segmenting the fly embryo: logical analysis

of the role of the segment polarity cross-regulatory module. The International Journal of

Developmental Biology, 52(8):1059–1075, 2008. doi: 10.1387/ijdb.072439ls.

[99] S. Klamt, J. Saez-Rodriguez, J. A. Lindquist, L. Simeoni, and E. D. Gilles. A methodology

for the structural and functional analysis of signaling and regulatory networks. BMC

Bioinformatics, 7(1):56, 2006. doi: 10.1186/1471-2105-7-56.

[100] A. Faure, A. Naldi, C. Chaouiya, and D. Thieffry. Dynamical analysis of a generic Boolean

model for the control of the mammalian cell cycle. Bioinformatics, 22(14):e124–e131, July

2006. doi: 10.1093/bioinformatics/btl210.

[101] L. Mendoza and I. Xenarios. A method for the generation of standardized qualitative

dynamical systems of regulatory networks. Theoretical Biology and Medical Modelling, 3

(1):13, 2006. doi: 10.1186/1742-4682-3-13.

[102] F. Gouveia, I. Lynce, and P. T. Monteiro. Model revision of logical regulatory networks

using logic-based tools. In Technical Communications of the 34th International Conference

on Logic Programming (ICLP 2018). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik

GmbH, Wadern/Saarbruecken, Germany, 2018. doi: 10.4230/OASICS.ICLP.2018.23.

[103] F. Gouveia, I. Lynce, and P. T. Monteiro. Model revision of Boolean regulatory networks

at stable state. In Bioinformatics Research and Applications, pages 100–112. Springer

International Publishing, 2019. doi: 10.1007/978-3-030-20242-2 9.

106

[104] F. Gouveia, I. Lynce, and P. T. Monteiro. Revision of Boolean models of regulatory

networks using stable state observations. Journal of Computational Biology, 27(2):144–

155, Feb. 2020. doi: 10.1089/cmb.2019.0289.

[105] F. Gouveia, I. Lynce, and P. T. Monteiro. Semi-automatic model revision of Boolean

regulatory networks: confronting time-series observations with (a)synchronous dynamics.

bioRxiv, May 2020. doi: 10.1101/2020.05.10.086900.

[106] F. Gouveia, I. Lynce, and P. T. Monteiro. ModRev - model revision tool for Boolean logical

models of biological regulatory networks. In Computational Methods in Systems Biology,

pages 339–348. Springer International Publishing, 2020. doi: 10.1007/978-3-030-60327-4

18.

[107] K. Inoue. Logic programming for Boolean networks. In Twenty-Second International Joint

Conference on Artificial Intelligence, 2011.

[108] A. Naldi. BioLQM: A java toolkit for the manipulation and conversion of logical qualitative

models of biological networks. Frontiers in Physiology, 9, Nov. 2018. doi: 10.3389/fphys.

2018.01605.

[109] A. Naldi, C. Hernandez, N. Levy, G. Stoll, P. T. Monteiro, C. Chaouiya, T. Helikar,

A. Zinovyev, L. Calzone, S. Cohen-Boulakia, D. Thieffry, and L. Paulevé. The CoLoMoTo

interactive notebook: Accessible and reproducible computational analyses for qualitative

biological networks. Frontiers in Physiology, 9, June 2018. doi: 10.3389/fphys.2018.00680.

107

108

Appendix A

Results

Here is presented detailed results of the evaluation method described in Chapter 6.

Table A.1 shows the results obtained when the proposed model revision approach is evaluated

under stable state observations considering a time limit of 3 600 seconds. For the search of

function repair, it is considered the C++ implementation discussed in Section 4.2. These results

are very similar to the results shown in Table 6.4 that corresponds to the same evaluation with a

lower time limit (600 seconds). In fact, increasing the time limit by a factor of six only produces

an increase of 7% of solved instances.

Here, we also present detailed results when corrupted models are confronted with time-series

observations under synchronous and asynchronous update scheme. Table A.2 shows the results

obtained for each model under different corruption configurations, when confronted with one

time-series observation with three time steps under synchronous update scheme, and for the

asynchronous update scheme the results are shown in Table A.3. We increased the number of

time steps from three to twenty, and the results are shown in Table A.4 for the synchronous

update scheme, and in Table A.5 for the asynchronous update scheme.

Experiments are made considering five time-series observations simultaneously. Table A.6

shows the results for five observations with three time steps under the synchronous update

scheme (Table A.7 for the asynchronous case). Then, the results for five observations when the

number of time steps increases from three to twenty are shown in Tables A.8 and A.8 considering

synchronous and asynchronous update scheme, respectively.

Results show that when the original models are corrupted with topological changes, the solv-

ing time and number of unsolved instances increases. Moreover, when the number of observations

or the size of the observations increases, the solving time also increases.

Considering the same number of observations and time steps, the results for the asynchronous

update scheme are better than the results for the synchronous update scheme.

109

Table A.1: Results for model revision of FY, SP, TCR, MCC, and Th, under stable state observations using C++ for function repair search. F%,
E%, R%, and A% are the probabilistic parameters used to change the original models. Average (Avg.) and median (Med.) times, in seconds, of
the solved instances. #TO is the number of timeouts out of 100 considering a time limit of 3600 seconds.

(%) FY SP TCR MCC Th

F E R A Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO

5 0 0 0 0,021 0,021 0 0,022 0,022 0 0,032 0,033 0 0,010 0,011 0 0,014 0,014 0

25 0 0 0 0,021 0,022 0 0,022 0,023 0 0,031 0,032 0 0,011 0,011 0 0,014 0,014 0

50 0 0 0 0,021 0,022 0 0,023 0,024 0 0,033 0,034 0 0,011 0,010 0 0,014 0,014 0

100 0 0 0 0,021 0,021 0 0,026 0,027 0 0,034 0,035 0 0,010 0,009 0 0,015 0,015 0

0 5 0 0 47,043 0,023 0 2,368 0,030 1 0,032 0,033 0 0,011 0,008 0 58,700 0,016 0

0 10 0 0 139,205 0,027 0 10,703 0,195 6 0,033 0,034 0 0,019 0,012 0 94,927 0,015 0

0 15 0 0 222,487 0,033 0 71,062 0,306 7 0,034 0,034 0 0,256 0,013 0 134,074 0,019 0

0 20 0 0 326,316 4,652 0 93,628 1,072 12 0,034 0,035 0 6,141 0,015 0 171,773 0,026 0

0 25 0 0 407,593 141,571 0 137,763 1,960 15 0,035 0,035 0 6,566 0,019 0 243,159 0,273 0

0 50 0 0 954,266 721,056 0 544,176 224,736 50 0,038 0,038 0 44,685 1,121 0 297,434 32,711 0

0 75 0 0 1 517, 655 1 405, 030 0 1 089, 124 803,081 85 0,040 0,041 0 458,875 208,973 0 134,983 0,992 0

0 0 1 0 0,026 0,023 6 0,179 0,023 0 0,041 0,033 0 0,010 0,009 0 0,019 0,015 3

0 0 5 0 0,243 0,023 13 0,435 0,030 0 0,065 0,034 0 0,010 0,009 0 0,122 0,017 7

0 0 10 0 0,243 0,023 17 0,711 0,165 0 0,067 0,036 0 0,010 0,008 0 0,221 0,020 10

0 0 15 0 0,742 0,024 18 0,759 0,129 0 0,085 0,055 0 0,010 0,009 0 0,266 0,020 11

0 0 0 1 0,043 0,024 0 21,869 0,035 10 0,053 0,036 0 0,010 0,009 0 2,702 0,017 2

0 0 0 5 7,533 0,046 0 115,744 16,053 33 46,981 0,977 28 3,559 0,012 0 27,395 1,375 40

0 0 0 10 36,869 0,148 5 638,044 133,642 80 573,929 197,227 83 3,919 0,016 0 382,495 71,815 65

0 0 0 15 118,670 0,227 7 710,902 710,902 98 - - 100 6,247 0,020 0 1 269, 273 263,372 95

25 5 0 0 68,623 0,026 0 2,913 0,029 1 0,034 0,034 0 0,011 0,010 0 68,511 0,018 0

50 25 0 0 282,054 0,786 0 157,226 2,582 21 0,037 0,037 0 4,807 0,022 0 105,260 0,024 0

100 50 0 0 893,875 603,361 1 381,256 53,331 43 0,044 0,044 0 59,727 2,689 0 192,706 32,738 0

5 25 5 5 402,601 0,456 19 1 174, 075 454,305 73 563,139 1,004 51 38,369 0,035 4 313,578 2,456 37

10 10 5 5 57,412 0,047 13 619,409 31,409 49 368,948 12,989 25 0,839 0,016 2 209,292 1,561 36

110

Table A.2: Results for model revision of FY, SP, TCR, MCC, and Th, confronted with one time-series observation with three time steps under
synchronous update scheme. F%, E%, R%, and A% are the probabilistic parameters used to change the original models. Average (Avg.) and
median (Med.) times, in seconds, of the solved instances. #TO is the number of timeouts out of 100 considering a time limit of 3 600 seconds.

(%) FY SP TCR MCC Th

F E R A Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO

5 0 0 0 0,018 0,017 0 0,020 0,020 0 0,028 0,027 0 0,017 0,017 0 0,019 0,019 0

25 0 0 0 0,017 0,017 0 0,019 0,019 0 0,027 0,027 0 0,015 0,015 0 0,020 0,020 0

50 0 0 0 0,015 0,015 0 0,020 0,020 0 0,027 0,027 0 0,015 0,015 0 0,019 0,018 0

100 0 0 0 0,014 0,014 0 0,024 0,023 0 0,028 0,029 0 0,015 0,016 0 0,022 0,022 0

0 5 0 0 0,016 0,015 0 3,528 0,020 8 0,025 0,025 0 0,023 0,016 0 52,331 0,019 0

0 10 0 0 32,696 0,016 1 12,514 0,022 17 0,027 0,026 0 0,028 0,016 0 118,095 0,020 0

0 15 0 0 204,054 0,018 4 22,451 0,025 22 0,027 0,027 0 0,033 0,017 0 195,096 0,019 0

0 20 0 0 270,141 0,019 4 49,032 0,034 27 0,028 0,028 0 0,042 0,020 0 232,137 0,020 0

0 25 0 0 413,535 0,020 6 52,541 0,248 34 0,028 0,027 0 0,045 0,021 0 253,376 0,020 0

0 50 0 0 1 030, 686 1,157 22 99,348 30,521 57 0,029 0,029 0 0,069 0,053 0 310,312 51,220 0

0 75 0 0 1 553, 580 38,097 51 142,784 131,089 78 0,030 0,029 0 0,115 0,110 0 193,844 71,303 0

0 0 1 0 121,292 0,016 0 45,325 0,020 5 0,027 0,026 0 0,115 0,015 0 0,025 0,021 4

0 0 5 0 87,129 0,014 0 100,318 0,023 16 0,044 0,032 0 0,130 0,016 0 0,163 0,022 6

0 0 10 0 163,747 0,016 0 138,886 0,040 25 0,105 0,048 0 0,134 0,019 0 0,475 0,033 6

0 0 15 0 198,759 0,015 0 152,480 0,196 22 0,162 0,068 0 0,261 0,030 0 0,849 0,049 8

0 0 0 1 0,015 0,014 0 1,862 0,021 15 0,029 0,027 0 10,838 0,016 5 7,401 0,019 9

0 0 0 5 0,047 0,015 0 21,484 0,208 51 36,112 1,721 43 75,168 0,026 14 43,346 0,166 54

0 0 0 10 4,800 0,018 0 71,403 23,909 86 1347,743 569,305 97 45,886 0,044 29 159,511 21,006 88

0 0 0 15 9,484 0,028 0 388,199 382,488 96 100 128,785 1,348 46 1 097, 470 1 097, 470 99

25 5 0 0 21,222 0,016 0 20,986 0,021 9 0,025 0,025 0 0,026 0,018 0 29,325 0,020 0

50 25 0 0 374,014 0,023 3 62,301 0,086 33 0,029 0,028 0 0,049 0,023 0 87,167 0,021 0

100 50 0 0 1 220, 268 0,883 1 127,912 38,497 61 0,032 0,031 0 0,135 0,097 0 125,006 0,027 0

5 25 5 5 388,430 0,042 11 520,266 42,913 69 460,220 9,251 35 130,099 0,078 16 363,380 20,947 51

10 10 5 5 184,262 0,019 2 311,957 15,437 59 248,863 4,322 24 88,873 0,041 18 229,340 0,822 58

111

Table A.3: Results for model revision of FY, SP, TCR, MCC, and Th, confronted with one time-series observation with three time steps under
asynchronous update scheme. F%, E%, R%, and A% are the probabilistic parameters used to change the original models. Average (Avg.) and
median (Med.) times, in seconds, of the solved instances. #TO is the number of timeouts out of 100 considering a time limit of 3 600 seconds.

(%) FY SP TCR MCC Th

F E R A Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO

5 0 0 0 0,022 0,022 0 0,030 0,031 0 0,040 0,040 0 0,023 0,024 0 0,032 0,032 0

25 0 0 0 0,022 0,023 0 0,032 0,033 0 0,040 0,040 0 0,024 0,024 0 0,029 0,029 0

50 0 0 0 0,022 0,022 0 0,033 0,031 0 0,039 0,038 0 0,024 0,024 0 0,029 0,030 0

100 0 0 0 0,021 0,020 0 0,034 0,033 0 0,040 0,039 0 0,024 0,024 0 0,029 0,030 0

0 5 0 0 0,022 0,022 0 0,031 0,029 0 0,041 0,040 0 0,023 0,230 0 0,029 0,029 0

0 10 0 0 0,043 0,024 0 0,029 0,028 0 0,041 0,040 0 0,024 0,024 0 0,029 0,029 0

0 15 0 0 0,131 0,023 0 0,031 0,030 0 0,044 0,042 0 0,024 0,024 0 0,029 0,029 0

0 20 0 0 0,891 0,025 0 0,031 0,031 0 0,043 0,041 0 0,023 0,024 0 0,029 0,029 0

0 25 0 0 1,316 0,025 0 0,029 0,029 0 0,043 0,040 0 0,024 0,025 0 0,029 0,030 0

0 50 0 0 33,012 1,296 0 0,032 0,032 0 0,043 0,040 0 0,024 0,025 0 0,028 0,028 0

0 75 0 0 238,724 33,771 0 0,033 0,033 0 0,039 0,038 0 0,024 0,023 0 0,029 0,028 0

0 0 1 0 0,022 0,022 0 0,031 0,031 0 0,039 0,040 0 0,022 0,023 0 0,028 0,028 0

0 0 5 0 0,021 0,021 0 0,030 0,030 0 0,039 0,039 0 0,022 0,023 0 0,027 0,027 0

0 0 10 0 0,020 0,020 0 0,029 0,030 0 0,036 0,036 0 0,022 0,022 0 0,028 0,027 0

0 0 15 0 0,020 0,020 0 0,029 0,028 0 0,037 0,036 0 0,021 0,022 0 0,027 0,027 0

0 0 0 1 0,023 0,023 0 0,033 0,033 0 0,044 0,044 0 0,024 0,024 0 0,027 0,026 0

0 0 0 5 0,067 0,024 0 0,036 0,037 0 2,538 0,054 4 0,025 0,024 0 0,343 0,030 0

0 0 0 10 3,113 0,025 1 0,039 0,037 0 25,248 0,098 15 0,057 0,024 0 3,417 0,034 3

0 0 0 15 6,743 0,031 1 0,042 0,041 0 175,381 1,486 61 0,399 0,025 1 28,781 0,040 12

25 5 0 0 0,023 0,023 0 0,031 0,032 0 0,040 0,040 0 0,023 0,024 0 0,028 0,028 0

50 25 0 0 0,963 0,024 0 0,032 0,031 0 0,042 0,041 0 0,023 0,024 0 0,027 0,028 0

100 50 0 0 101,831 0,059 0 0,033 0,033 0 0,042 0,041 0 0,024 0,024 0 0,032 0,032 0

5 25 5 5 11,193 0,038 1 0,033 0,033 0 1,573 0,055 2 0,023 0,024 0 0,034 0,031 1

10 10 5 5 2,813 0,025 0 0,032 0,033 0 0,965 0,052 1 0,023 0,024 0 0,034 0,030 1

112

Table A.4: Results for model revision of FY, SP, TCR, MCC, and Th, confronted with one time-series observation with twenty time steps under
synchronous update scheme. F%, E%, R%, and A% are the probabilistic parameters used to change the original models. Average (Avg.) and
median (Med.) times, in seconds, of the solved instances. #TO is the number of timeouts out of 100 considering a time limit of 3 600 seconds.

(%) FY SP TCR MCC Th

F E R A Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO

5 0 0 0 0,039 0,038 0 0,053 0,053 0 0,077 0,077 0 0,041 0,041 0 0,048 0,048 0

25 0 0 0 0,039 0,038 0 0,058 0,055 0 0,087 0,084 0 0,046 0,045 0 0,052 0,052 0

50 0 0 0 0,040 0,039 0 0,060 0,058 0 0,089 0,086 0 0,046 0,044 0 0,056 0,053 0

100 0 0 0 0,037 0,036 0 0,062 0,061 0 0,088 0,082 0 0,047 0,047 0 0,052 0,052 0

0 5 0 0 96,888 0,043 0 4,004 0,056 8 0,088 0,082 0 0,529 0,048 17 39,995 0,050 0

0 10 0 0 163,402 0,047 1 16,397 0,058 17 0,089 0,081 0 1,605 0,056 22 89,338 0,050 0

0 15 0 0 416,589 0,046 6 31,769 0,072 22 0,078 0,078 0 2,303 0,119 33 146,347 0,052 0

0 20 0 0 615,862 0,050 8 61,152 0,117 27 0,080 0,079 0 3,741 0,256 45 166,272 0,051 0

0 25 0 0 886,890 0,066 7 69,062 0,496 34 0,079 0,079 0 6,952 0,596 55 177,135 0,055 0

0 50 0 0 1 819, 381 2 794, 790 33 148,705 89,330 57 0,085 0,081 0 143,000 5,894 89 174,941 0,244 0

0 75 0 0 2 100, 315 2 895, 305 72 164,466 135,169 78 0,097 0,091 0 - - 100 77,679 0,406 0

0 0 1 0 75,810 0,040 4 43,729 0,053 5 0,086 0,087 0 23,074 0,045 9 0,062 0,055 4

0 0 5 0 78,203 0,039 7 99,426 0,077 16 0,132 0,101 0 104,979 0,150 20 0,401 0,058 6

0 0 10 0 132,960 0,043 9 141,165 0,121 25 0,403 0,159 0 136,136 0,371 25 1,029 0,076 6

0 0 15 0 81,180 0,047 10 150,323 0,270 22 0,525 0,196 2 182,249 0,429 33 2,426 0,098 8

0 0 0 1 0,042 0,041 0 1,833 0,054 15 0,121 0,114 0 8,397 0,042 23 8,005 0,056 10

0 0 0 5 0,495 0,042 1 29,533 0,254 51 53,774 2,330 46 56,059 0,061 38 48,181 0,147 61

0 0 0 10 2,171 0,050 1 78,696 25,807 86 1 393, 524 687,870 97 75,595 42,328 60 109,368 10,559 91

0 0 0 15 4,547 0,098 5 382,194 264,173 97 - - 100 77,182 43,474 81 - - 100

25 5 0 0 70,675 0,042 0 26,203 0,073 9 0,095 0,103 0 1,609 0,049 19 26,555 0,051 0

50 25 0 0 817,436 0,070 5 94,040 0,259 33 0,099 0,105 0 8,858 0,334 58 66,763 0,054 0

100 50 0 0 1 399, 972 1 336, 210 25 154,106 51,303 62 0,088 0,088 0 73,219 17,333 93 63,983 0,073 0

5 25 5 5 842,780 0,263 21 471,031 54,254 71 637,716 18,367 49 361,661 1,888 84 273,179 14,663 63

10 10 5 5 352,805 0,052 7 315,138 16,055 62 316,313 4,493 31 232,008 0,366 63 211,942 2,191 62

113

Table A.5: Results for model revision of FY, SP, TCR, MCC, and Th, confronted with one time-series observation with twenty time steps under
asynchronous update scheme. F%, E%, R%, and A% are the probabilistic parameters used to change the original models. Average (Avg.) and
median (Med.) times, in seconds, of the solved instances. #TO is the number of timeouts out of 100 considering a time limit of 3 600 seconds.

(%) FY SP TCR MCC Th

F E R A Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO

5 0 0 0 0,596 0,566 0 0,704 0,705 0 0,875 0,852 0 0,529 0,528 0 0,489 0,483 0

25 0 0 0 0,590 0,575 0 0,739 0,736 0 0,951 0,995 0 0,516 0,523 0 0,502 0,497 0

50 0 0 0 0,567 0,551 0 0,726 0,717 0 0,979 0,984 0 0,606 0,613 0 0,492 0,490 0

100 0 0 0 0,482 0,471 0 0,777 0,808 0 0,854 0,850 0 0,590 0,594 0 0,504 0,504 0

0 5 0 0 98,951 0,544 0 0,840 0,706 0 0,875 0,873 0 0,615 0,619 0 39,450 0,526 0

0 10 0 0 132,101 0,536 1 5,043 0,708 0 0,876 0,873 0 0,621 0,611 0 71,228 0,497 0

0 15 0 0 286,754 0,546 3 8,562 0,720 0 0,825 0,824 0 0,626 0,644 0 107,518 0,536 0

0 20 0 0 478,539 0,600 4 15,125 0,837 3 0,984 0,986 0 0,548 0,525 0 134,129 0,497 0

0 25 0 0 526,535 0,621 4 21,625 0,843 6 0,949 0,994 0 0,602 0,573 0 138,431 0,501 0

0 50 0 0 895,868 1,852 23 39,714 0,982 13 0,903 0,859 0 0,615 0,581 0 131,784 0,759 0

0 75 0 0 1272,959 40,636 49 66,461 0,954 15 0,823 0,821 0 0,772 0,816 0 100,395 34,452 0

0 0 1 0 0,539 0,549 2 0,693 0,693 0 0,934 0,950 0 0,664 0,498 0 0,490 0,481 0

0 0 5 0 0,475 0,431 5 0,806 0,812 0 0,860 0,846 0 0,760 0,572 0 0,579 0,578 0

0 0 10 0 0,470 0,407 5 0,666 0,644 0 0,840 0,850 0 0,638 0,419 0 0,493 0,439 0

0 0 15 0 0,575 0,387 4 0,719 0,736 0 0,712 0,732 0 0,778 0,402 0 0,466 0,413 0

0 0 0 1 0,592 0,614 0 128,333 0,736 7 1,166 1,174 0 0,632 0,634 0 1,318 0,544 9

0 0 0 5 0,986 0,540 0 250,241 0,922 24 75,605 1,732 11 0,634 0,634 0 166,914 1,770 34

0 0 0 10 1,123 0,531 2 118,114 24,939 55 240,509 35,419 68 0,826 0,628 0 258,479 43,245 69

0 0 0 15 2,162 0,559 3 426,691 25,721 65 1829,561 2213,210 97 1,925 0,583 3 537,781 282,766 91

25 5 0 0 56,990 0,515 0 2,282 0,716 1 0,856 0,852 0 0,581 0,559 0 19,590 0,497 0

50 25 0 0 507,544 0,516 3 24,876 0,779 10 0,831 0,831 0 0,604 0,589 0 52,811 0,499 0

100 50 0 0 1258,254 8,303 1 34,464 0,811 25 1,021 1,024 0 0,594 0,573 0 60,583 0,586 0

5 25 5 5 497,517 0,513 11 21,195 0,803 25 223,903 1,700 17 95,159 0,534 5 208,960 1,662 34

10 10 5 5 204,649 0,478 4 121,493 0,816 23 20,126 1,542 11 27,923 0,534 4 254,194 2,014 33

114

Table A.6: Results for model revision of FY, SP, TCR, MCC, and Th, confronted with five time-series observations with three time steps under
synchronous update scheme. F%, E%, R%, and A% are the probabilistic parameters used to change the original models. Average (Avg.) and
median (Med.) times, in seconds, of the solved instances. #TO is the number of timeouts out of 100 considering a time limit of 3 600 seconds.

(%) FY SP TCR MCC Th

F E R A Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO

5 0 0 0 0,034 0,034 0 0,047 0,043 0 0,079 0,075 0 0,036 0,034 0 0,539 0,049 0

25 0 0 0 0,036 0,036 0 0,060 0,053 0 0,082 0,076 0 0,035 0,034 0 1,124 0,052 0

50 0 0 0 0,038 0,038 0 0,061 0,052 0 0,092 0,087 0 0,039 0,039 0 1,523 0,049 0

100 0 0 0 0,034 0,034 0 0,496 0,062 0 0,095 0,088 0 0,041 0,039 0 3,984 0,051 0

0 5 0 0 149,036 0,052 0 6,982 0,052 8 47,528 0,082 0 277,263 0,047 0 3,961 0,052 0

0 10 0 0 250,899 0,155 2 23,743 0,070 19 68,926 0,089 0 401,233 0,149 0 7,538 0,054 0

0 15 0 0 609,957 233,752 5 34,089 0,294 25 155,237 0,083 0 587,550 22,387 2 11,938 0,122 0

0 20 0 0 784,269 466,990 9 31,369 0,494 36 254,787 0,086 0 659,563 441,555 2 14,479 0,140 0

0 25 0 0 1 004, 311 468,244 9 40,917 0,515 44 273,838 0,104 0 769,427 484,609 5 13,759 7,217 0

0 50 0 0 1 712, 721 1 269, 560 39 84,042 86,718 81 551,012 1,178 0 1 359, 549 1 261, 060 22 31,704 29,349 0

0 75 0 0 2 072, 776 2 505, 265 76 790,819 193,801 90 807,193 667,769 0 2 324, 141 2 616, 250 65 49,879 51,357 0

0 0 1 0 290,335 0,048 12 44,465 0,054 7 0,097 0,085 3 358,055 0,042 6 0,391 0,053 18

0 0 5 0 282,751 0,068 25 60,434 0,127 28 2,515 0,147 6 537,688 0,571 18 0,863 0,076 31

0 0 10 0 337,528 0,242 27 148,221 1,995 35 2,258 0,319 8 574,117 1,548 32 3,584 0,225 44

0 0 15 0 468,393 0,536 25 228,163 8,817 33 14,432 0,600 11 580,600 4,103 30 11,624 1,528 46

0 0 0 1 0,105 0,043 0 62,692 0,113 20 4,616 0,387 0 5,811 0,042 13 26,934 0,144 13

0 0 0 5 5,227 0,075 1 278,937 35,142 68 1 119, 846 608,474 79 17,177 0,107 28 173,428 3,903 61

0 0 0 10 33,375 0,424 8 138,024 95,579 94 - - 100 68,031 4,704 42 563,541 24,332 95

0 0 0 15 150,653 1,753 16 - - 100 - - 100 99,678 53,101 67 - - 100

25 5 0 0 93,504 0,040 0 4,408 0,055 11 52,813 0,077 0 161,307 0,042 0 5,855 0,048 0

50 25 0 0 861,516 467,008 8 45,736 2,157 51 222,688 0,112 0 838,546 575,054 9 20,738 6,490 0

100 50 0 0 1 563, 853 1 378, 030 21 92,662 98,487 80 660,699 0,868 0 1 492, 257 1 367, 830 22 27,360 9,100 0

5 25 5 5 1 072, 227 468,463 45 862,258 539,042 89 1 709, 468 2 305, 500 93 792,369 49,447 62 975,991 348,559 81

10 10 5 5 508,984 0,338 30 409,681 45,839 80 540,447 105,732 85 841,158 441,759 48 473,617 25,765 74

115

Table A.7: Results for model revision of FY, SP, TCR, MCC, and Th, confronted with five time-series observations with three time steps under
asynchronous update scheme. F%, E%, R%, and A% are the probabilistic parameters used to change the original models. Average (Avg.) and
median (Med.) times, in seconds, of the solved instances. #TO is the number of timeouts out of 100 considering a time limit of 3 600 seconds.

(%) FY SP TCR MCC Th

F E R A Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO

5 0 0 0 0,251 0,286 0 0,406 0,395 0 0,498 0,500 0 0,295 0,300 0 0,306 0,292 0

25 0 0 0 0,259 0,250 0 0,448 0,441 0 0,503 0,504 0 0,338 0,344 0 0,352 0,355 0

50 0 0 0 0,272 0,281 0 0,450 0,433 0 0,578 0,604 0 0,332 0,332 0 0,332 0,320 0

100 0 0 0 0,272 0,268 0 0,399 0,396 0 0,567 0,538 0 0,301 0,318 0 0,343 0,349 0

0 5 0 0 0,302 0,299 0 0,488 0,497 0 0,561 0,524 0 3,080 0,351 0 0,289 0,284 0

0 10 0 0 0,328 0,302 0 0,480 0,500 0 0,560 0,522 0 5,550 0,298 1 0,287 0,283 0

0 15 0 0 0,405 0,306 0 0,392 0,387 0 0,528 0,520 0 11,026 0,384 1 0,354 0,355 0

0 20 0 0 1,170 0,355 0 0,442 0,442 0 0,564 0,527 0 8,848 0,348 4 0,340 0,322 0

0 25 0 0 1,594 0,318 0 0,436 0,431 0 0,531 0,525 0 11,041 0,322 4 0,333 0,305 0

0 50 0 0 33,478 1,582 0 0,494 0,503 0 0,565 0,530 0 29,372 0,706 20 0,415 0,326 0

0 75 0 0 238,936 34,151 0 0,387 0,384 0 0,572 0,531 0 39,783 1,550 53 0,824 0,523 0

0 0 1 0 0,328 0,341 0 0,466 0,485 0 0,518 0,500 0 0,289 0,289 0 0,310 0,292 0

0 0 5 0 0,241 0,239 0 0,368 0,372 0 0,526 0,495 0 0,300 0,296 0 0,294 0,282 0

0 0 10 0 0,263 0,260 0 0,373 0,370 0 0,437 0,449 0 0,257 0,250 0 0,278 0,270 0

0 0 15 0 0,206 0,205 0 0,363 0,354 0 0,459 0,456 0 0,238 0,236 0 0,266 0,258 0

0 0 0 1 0,223 0,189 0 0,416 0,413 0 0,652 0,625 0 0,339 0,311 0 0,324 0,320 0

0 0 0 5 0,593 0,301 0 1,186 0,476 1 18,075 1,035 11 0,372 0,306 0 32,000 0,423 6

0 0 0 10 3,302 0,283 3 48,156 0,657 6 191,895 14,397 43 78,615 0,318 0 293,350 4,282 26

0 0 0 15 7,528 0,315 6 117,468 0,816 16 533,185 63,266 84 148,966 0,342 3 383,454 130,733 67

25 5 0 0 0,308 0,327 0 0,400 0,397 0 0,528 0,504 0 0,352 0,338 0 0,298 0,295 0

50 25 0 0 1,112 0,307 0 0,503 0,508 0 0,559 0,530 0 8,637 0,353 2 0,290 0,287 0

100 50 0 0 101,106 0,419 0 0,483 0,487 0 0,522 0,521 0 23,627 0,614 22 0,430 0,300 0

5 25 5 5 20,932 0,329 2 0,956 0,541 0 7,243 1,011 13 27,194 0,356 6 125,318 0,692 10

10 10 5 5 11,186 0,254 1 17,668 0,467 0 30,571 1,113 7 5,901 0,341 1 33,689 0,471 7

116

Table A.8: Results for model revision of FY, SP, TCR, MCC, and Th, confronted with five time-series observations with twenty time steps under
synchronous update scheme. F%, E%, R%, and A% are the probabilistic parameters used to change the original models. Average (Avg.) and
median (Med.) times, in seconds, of the solved instances. #TO is the number of timeouts out of 100 considering a time limit of 3 600 seconds.

(%) FY SP TCR MCC Th

F E R A Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO

5 0 0 0 0,370 0,351 0 0,671 0,493 0 0,590 0,570 0 0,678 0,384 0 0,999 0,493 0

25 0 0 0 0,363 0,344 0 1,002 0,515 0 0,624 0,584 0 0,709 0,398 0 1,531 0,503 0

50 0 0 0 0,362 0,341 0 1,193 0,539 0 0,626 0,591 0 1,884 0,407 0 1,988 0,520 0

100 0 0 0 0,323 0,318 0 1,910 0,605 0 0,643 0,605 0 2,768 0,428 0 4,428 0,518 0

0 5 0 0 151,053 0,424 0 23,263 0,766 8 47,559 0,564 0 228,281 0,648 22 4,097 0,499 0

0 10 0 0 253,263 0,756 2 57,879 0,989 19 68,883 0,562 0 345,673 1,008 29 7,193 0,548 0

0 15 0 0 611,574 237,375 5 84,908 13,335 25 94,456 0,604 0 527,698 439,478 43 11,809 0,758 0

0 20 0 0 783,316 471,110 9 99,780 26,613 36 128,838 0,654 0 573,800 445,633 56 13,864 0,796 0

0 25 0 0 1 006, 330 475,483 9 122,234 37,737 44 130,726 0,660 0 534,667 446,348 67 14,399 11,818 0

0 50 0 0 1 687, 878 1 233, 490 40 193,176 226,468 81 202,630 0,808 0 1 714, 987 1 641, 190 89 30,699 27,519 0

0 75 0 0 2 078, 331 2 537, 190 76 847,240 318,779 90 163,514 1,684 0 2 237, 030 2 237, 030 99 50,794 54,019 0

0 0 1 0 173,969 0,396 18 54,214 0,781 14 0,648 0,603 3 431,983 0,655 16 0,597 0,512 24

0 0 5 0 145,952 0,395 32 83,629 9,822 44 2,917 0,813 9 551,071 3,315 36 6,150 0,553 40

0 0 10 0 153,948 0,487 35 133,729 15,615 53 4,433 1,403 11 511,235 4,946 54 3,220 0,739 61

0 0 15 0 126,155 0,669 39 333,519 31,110 66 23,010 2,304 20 599,740 5,961 60 18,754 0,830 69

0 0 0 1 0,428 0,361 0 14,984 0,810 32 6,370 1,587 0 12,066 0,648 23 15,936 1,632 12

0 0 0 5 22,332 0,432 1 133,954 22,878 77 1 221, 388 533,617 80 65,005 1,156 38 230,699 7,779 69

0 0 0 10 63,957 0,851 9 1008,229 465,962 97 - - 100 200,018 67,062 60 265,610 31,696 97

0 0 0 15 166,218 2,918 18 - - 100 - - 100 194,446 57,615 82 - - 100

25 5 0 0 94,188 0,355 0 28,089 0,818 11 40,823 0,561 0 141,176 0,645 24 6,133 0,500 0

50 25 0 0 839,938 471,929 9 85,660 25,524 51 168,599 0,597 0 784,962 546,629 72 20,355 10,356 0

100 50 0 0 1 546, 241 1 380, 905 22 211,082 84,279 81 478,367 1,104 0 1 217, 415 1216, 500 91 27,788 11,010 0

5 25 5 5 1 088, 608 471,932 56 1 081, 923 500,249 97 1 783, 888 1 453, 270 95 1 141, 617 1 071, 785 92 924,193 88,985 88

10 10 5 5 436,920 0,699 39 851,979 381,668 93 685,947 115,152 87 1 094, 204 788,874 74 474,074 16,871 80

117

Table A.9: Results for model revision of FY, SP, TCR, MCC, and Th, confronted with five time-series observations with twenty time steps under
asynchronous update scheme. F%, E%, R%, and A% are the probabilistic parameters used to change the original models. Average (Avg.) and
median (Med.) times, in seconds, of the solved instances. #TO is the number of timeouts out of 100 considering a time limit of 3 600 seconds.

(%) FY SP TCR MCC Th

F E R A Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO Avg. (s) Med. (s) #TO

5 0 0 0 16,562 16,363 0 25,005 24,411 0 28,710 28,652 0 17,398 17,151 0 16,485 16,393 0

25 0 0 0 16,668 16,538 0 25,639 25,128 0 29,343 28,997 0 17,505 17,254 0 16,956 16,582 0

50 0 0 0 15,957 15,911 0 26,373 26,060 0 28,970 28,819 0 17,528 17,348 0 16,488 16,355 0

100 0 0 0 14,807 14,701 0 29,322 28,815 0 30,458 29,851 0 17,552 17,305 0 16,786 16,614 0

0 5 0 0 109,487 16,377 0 116,984 33,587 24 28,609 28,588 0 33,110 16,559 16 23,235 16,477 0

0 10 0 0 143,790 16,477 1 273,981 33,564 44 29,504 28,921 0 18,575 17,042 16 27,603 16,603 0

0 15 0 0 302,315 17,737 3 401,163 33,261 57 69,856 28,764 0 45,327 17,205 23 32,722 16,532 0

0 20 0 0 475,940 16,348 4 697,376 33,984 65 132,233 28,515 0 74,439 18,005 32 37,723 16,438 0

0 25 0 0 523,951 16,533 4 1050,159 140,906 73 165,542 28,289 0 86,615 17,906 43 37,715 16,677 0

0 50 0 0 1046,724 17,752 18 1590,402 1369,147 92 480,665 30,341 0 269,559 28,443 52 45,745 54,474 0

0 75 0 0 1374,024 57,402 46 2823,235 2658,765 96 1114,170 1323,950 0 399,089 88,909 73 48,493 55,138 0

0 0 1 0 15,009 15,420 2 46,902 33,046 15 28,063 27,952 0 16,741 16,531 0 15,927 15,792 4

0 0 5 0 13,909 14,156 5 82,851 25,152 33 27,306 27,647 0 15,714 15,838 0 15,339 15,355 6

0 0 10 0 12,545 12,327 5 129,420 29,898 35 24,531 25,874 0 15,334 15,134 0 14,832 14,958 6

0 0 15 0 11,759 11,523 4 188,572 31,302 50 22,502 21,658 0 15,042 14,997 0 13,887 14,130 8

0 0 0 1 16,322 16,461 0 222,456 34,351 24 33,821 33,504 0 56,258 16,801 0 41,263 18,259 12

0 0 0 5 25,568 16,014 0 744,221 43,526 75 211,442 50,755 36 101,902 19,654 12 297,203 24,737 56

0 0 0 10 16,464 16,156 4 738,437 145,950 96 - - 100 257,200 86,724 31 1045,175 789,611 91

0 0 0 15 18,688 16,009 12 44,554 44,554 99 39,644 39,644 99 410,092 241,163 42 - - 100

25 5 0 0 60,738 16,052 0 65,739 33,166 30 28,071 28,019 0 26,128 17,007 16 21,036 17,630 0

50 25 0 0 507,558 15,358 3 943,385 122,151 67 88,800 28,519 0 165,400 19,797 35 29,453 16,198 0

100 50 0 0 1292,601 17,042 3 1777,356 2162,700 85 594,652 30,550 2 315,118 31,741 45 32,723 16,700 0

5 25 5 5 530,478 15,259 13 1389,377 972,294 90 825,188 91,886 59 459,281 18,736 56 450,681 48,568 62

10 10 5 5 231,279 14,960 4 1008,699 161,689 92 422,554 63,104 38 230,970 18,462 39 301,354 25,621 63

118

The following figures show time results in seconds considering one and five time-series obser-

vations, and observations with three and twenty time steps. The results are presented by model:

FY in Figures A.1 and A.2; SP in Figures A.3 and A.4; TCR in Figures A.5 and A.6; MCC in

Figures A.7 and A.8; and Th in Figures A.9 and A.10. Side by side are shown the results for the

synchronous update scheme (on the left) and for the asynchronous update scheme (on the right).

Results show that the solving time increases with the increase of the number of observations

considered, as well as with the increase of the size of the observations (number of time steps).

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000

T
im
e

 (
s
)

Instances

1obs 3ts
5obs 3ts
1obs 20ts
5obs 20ts

Figure A.1: Solving times for FY model un-
der synchronous update scheme. Results con-
sider different number of observations (obs)
and time steps (ts).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000

T
im
e

 (
s
)

Instances

1obs 3ts
5obs 3ts
1obs 20ts
5obs 20ts

Figure A.2: Solving times for FY model un-
der asynchronous update scheme. Results con-
sider different number of observations (obs)
and time steps (ts).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000

T
im
e

 (
s
)

Instances

1obs 3ts
5obs 3ts
1obs 20ts
5obs 20ts

Figure A.3: Solving times for SP model un-
der synchronous update scheme. Results con-
sider different number of observations (obs)
and time steps (ts).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000

T
im
e

 (
s
)

Instances

1obs 3ts
5obs 3ts
1obs 20ts
5obs 20ts

Figure A.4: Solving times for SP model un-
der asynchronous update scheme. Results con-
sider different number of observations (obs)
and time steps (ts).

119

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000

T
im
e

 (
s
)

Instances

1obs 3ts
5obs 3ts
1obs 20ts
5obs 20ts

Figure A.5: Solving times for TCR model un-
der synchronous update scheme. Results con-
sider different number of observations (obs)
and time steps (ts).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000

T
im
e

 (
s
)

Instances

1obs 3ts
5obs 3ts
1obs 20ts
5obs 20ts

Figure A.6: Solving times for TCR model un-
der asynchronous update scheme. Results con-
sider different number of observations (obs)
and time steps (ts).

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000

T
im
e

 (
s
)

Instances

1obs 3ts
5obs 3ts
1obs 20ts
5obs 20ts

Figure A.7: Solving times for MCC model un-
der synchronous update scheme. Results con-
sider different number of observations (obs)
and time steps (ts).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000

T
im
e

 (
s
)

Instances

1obs 3ts
5obs 3ts
1obs 20ts
5obs 20ts

Figure A.8: Solving times for MCC model un-
der asynchronous update scheme. Results con-
sider different number of observations (obs)
and time steps (ts).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000

T
im
e

 (
s
)

Instances

1obs 3ts
5obs 3ts
1obs 20ts
5obs 20ts

Figure A.9: Solving times for Th model un-
der synchronous update scheme. Results con-
sider different number of observations (obs)
and time steps (ts).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000

T
im
e

 (
s
)

Instances

1obs 3ts
5obs 3ts
1obs 20ts
5obs 20ts

Figure A.10: Solving times for Th model un-
der asynchronous update scheme. Results con-
sider different number of observations (obs)
and time steps (ts).

120

Appendix B

Tutorial

A brief tutorial of the ModRev tool1 with small examples is here presented.

v1 v2

v3

fv1 = v2 ∧ v3

fv2 = v1 ∨ ¬v3

fv3 = v1

Figure B.1: Example of a Boolean logical model.

The model shown in Figure B.1 is represented by the following listing:

vertex(v1). vertex(v2). vertex(v3).

edge(v1,v2,1). edge(v1,v3,1). edge(v2,v1,1).

edge(v3,v1,1). edge(v3,v2,0).

functionOr(v1,1..1).

functionAnd(v1,1,v2). functionAnd(v1,1,v3).

functionOr(v2,1..2).

functionAnd(v2,1,v1). functionAnd(v2,2,v3).

functionOr(v3,1..1).

functionAnd(v3,1,v1).

Now let us consider that we want to define a stable state observation in which v1 has value

0, v2 has value 0, and v3 has value 1, as following:

exp(p1).

obs_vlabel(p1,v1,0). obs_vlabel(p1,v2,0). obs_vlabel(p1,v3,1).

Using ModRev tool, giving the model defined above (as a file model.lp) and the stable

state (as a file obsSS.lp), execute the following command:

1https://filipegouveia.github.io/ModelRevisionASP

121

https://filipegouveia.github.io/ModelRevisionASP

$./modrev -m model.lp -obs obsSS.lp -ss

Found solution with 1 repair operation.

Inconsistent node v3.

Repair #1:

Flip sign of edge (v1,v3).

This output means that the model in Figure B.1 can be repaired by changing the interaction

type between v1 and v3. If we repair the model and execute the above command again, the

result will be:

This network is consistent!

Now let us assume that the user knows that the interaction between v1 and v3 is correct, and

wants to prevent repairs over it. The predicate fixed(v1,v3). can be used to define that the

edge between these nodes can not be changed or removed. Adding this predicate to the model

and running the command above, we obtain the following result:

Found solution with 2 repair operations.

Inconsistent node v3.

Repair #1:

Change function of v3 to (v1) || (v3)

Add edge (v3,v3) with sign 1.

A different set of repair operations is obtained that does not change the fixed edge. Now

assume that the user wants to prevent any repair over the node v3. The predicate fixed(v3).

can be used to prevent that node to be inconsistent. However, in this example, if we prevent any

change to node v3, considering its regulatory function, and that v1 has value 0 and v3 has value

1, and we are in the presence of a stable state, it becomes impossible to repair the network.

In this case, when the model is over-constrained, using the same command as before, the tool

produces the following message:

It is not possible to repair this network.

Consider now that we have, for the same model in Figure B.1, a time-series data as shown

in Table B.1. Consider that this experimental observation with three time-steps (0, 1 and 2) is

considering a synchronous update scheme.

122

Table B.1: Synchronous time-series data

Time

0 1 2

N
o
d

e v1 0 1 0

v2 0 0 0

v3 1 0 0

We can represent the time-series data using the following listing:

#const t = 2.

exp(p2).

obs_vlabel(p2,0,v1,0). obs_vlabel(p2,0,v2,0).

obs_vlabel(p2,0,v3,1).

obs_vlabel(p2,1,v1,1). obs_vlabel(p2,1,v2,0).

obs_vlabel(p2,1,v3,0).

obs_vlabel(p2,2,v1,0). obs_vlabel(p2,2,v2,0).

obs_vlabel(p2,2,v3,0).

Note that we start the file indicating the maximum value of time step with #const t = 2.

Using ModRev to verify whether the model is consistent, while considering the above time-

series data (as a file obsTS01.lp) under a synchronous update scheme, execute the following

command:

$./modrev -m model.lp -obs obsTS01.lp -up s

This will produce the following result:

Found solution with 5 repair operations.

Inconsistent node v1.

Repair #1:

Change function of v1 to (v2) || (v3)

Inconsistent node v2.

Repair #1:

Change function of v2 to (v1 && v3)

Flip sign of edge (v1,v2).

Repair #2:

Change function of v2 to (v1 && v3)

123

Flip sign of edge (v3,v2).

Inconsistent node v3.

Repair #1:

Change function of v3 to (v1 && v2)

Add edge (v2,v3) with sign 1.

Repair #2:

Change function of v3 to (v1 && v3)

Add edge (v3,v3) with sign 1.

Note that now we have multiple choices to render the model consistent. To repair node v2,

for example, one can apply the operations in Repair #1 or in Repair #2. The same applies to

repair node v3.

If instead of a time-series data under a synchronous update scheme, we are under an asyn-

chronous update scheme, the previous command would change from -up s to -up a. The option

-up indicates the update scheme to be considered, with argument s for synchronous and a for

asynchronous.

ModRev also supports incomplete time-series data. Assume that we have the experimental

observation shown in Table B.2, where node v3 was not observed, and a value of v1 was also not

observed.

Table B.2: Incomplete synchronous time-series data

Time

0 1 2

N
o
d

e v1 0 1

v2 1 0 0

v3

Consider the following representation of an incomplete time-series data:

#const t = 2.

exp(p3).

obs_vlabel(p3,0,v1,0). obs_vlabel(p3,0,v2,1).

obs_vlabel(p3,1,v2,0).

obs_vlabel(p3,2,v1,1). obs_vlabel(p3,2,v2,0).

Executing the following command, while considering the above experimental observation (as

a file obsTS02.lp) under synchronous update scheme, produces the result below.

124

$./modrev -m model.lp -obs obsTS02.lp -up s

Found solution with 3 repair operations.

Inconsistent node v1.

Repair #1:

Change function of v1 to (v2) || (v3)

Flip sign of edge (v2,v1).

Inconsistent node v2.

Repair #1:

Change function of v2 to (v1 && v3)

ModRev tool also supports confronting a model with multiple experimental observations at

the same time. For example, we could confront the model of Figure B.1 with the two time-series

data above, using the command:

$./modrev -m model.lp -obs obsTS01.lp obsTS02.lp -up s

Note that the directive #const t = 2 must only be defined once.

125

126

	Model Revision of Boolean Logical Models of Biological Regulatory Networks
	Resumo
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	List of Algorithms
	List of Abbreviations

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Thesis Outline

	2 Background
	2.1 Biological Regulatory Networks
	2.1.1 Modelling
	2.1.2 Dynamics

	2.2 Boolean Functions
	2.3 Answer Set Programming

	3 Related Work
	3.1 Network and Model Inference
	3.2 Model Analysis
	3.2.1 Attractors Determination
	3.2.2 Reachability Verification
	3.2.3 Reduction Techniques

	3.3 Model Revision

	4 Logic-based Approaches
	4.1 Consistency of Boolean Logical Models
	4.1.1 Boolean Logical Model and Observations
	4.1.2 Consistency Check

	4.2 Boolean Function Relations

	5 Model Revision
	5.1 Model Revision Approach
	5.1.1 Validation of Node Consistency
	5.1.2 Function Repair Search

	5.2 ModRev - Model Revision Tool

	6 Experimental Evaluation
	6.1 Instances
	6.2 Results
	6.2.1 Stable State Observations
	6.2.2 Time-series Observations

	6.3 Discussion

	7 Conclusions
	7.1 Contributions
	7.2 Discussion and Future Work

	Bibliography
	A Results
	B Tutorial

