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Abstract

Different proteins have different functions determined by its structure. Proteins are a sequence of amino

acids folded into a three-dimensional structure. Each amino acid is formed by an amine group, a carboxyl

group and a side-chain. The side-chain is specific for each amino acid and each amino acid can have

numerous possible side-chain conformations, called rotamers. A protein has an energy associated and

this energy depends on the amino acids and side-chain that form the protein. Predicting the set of amino

acids and respective side-chain that minimizes the total energy of a protein is therefore a very important

problem, called protein design.

In this work we develop a program to solve the protein design problem using Answer Set Programming.

Answer Set Programming (ASP) is an approach to declarative solving problems. This work describes

the ASP program implemented to solve protein design problems, using the ASP grounder gringo and the

ASP solver clasp to search for the answer sets of the program.

Two approaches of the protein design problem were considered: one considered that the amino acids

of the protein to design are kept fixed; the other considered that the amino acids are not kept fixed and

therefore the amino acids and respective side-chains must be determined.

In this work were made two implementations in ASP for the protein design problem. One is a simple

codification and the other uses a multi-criteria optimization. Moreover, there were implemented three

algorithms of dead-end elimination (DEE): Original DEE; Simple Goldstein; and Simple Split.
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Resumo

Protéınas diferentes têm diferentes funções fortemente determinadas pela sua estrutura. As protéınas

são constitúıdas por uma sequência de aminoácidos que se dobram numa estrutura tridimensional. Cada

aminoácido é formado por um grupo amino, um grupo carbox́ılico e uma cadeia lateral. A cadeia lateral

é espećıfica para cada aminoácido e pode ter muitas configurações, chamadas rotamers. Uma protéına

tem uma energia associada que depende dos aminoácidos e respectivas cadeias laterais que formam a

protéına. Prever o conjunto de aminoácidos e as respectivas cadeias laterais que minimizam a energia

total de uma protéına é, portanto, um problema muito importante e é chamado de desenho de protéınas.

Neste trabalho desenvolveu-se um programa para resolver o problema de desenho de protéınas usando

answer set programming (ASP). Answer set programming é uma abordagem declarativa para resolver

problemas. Este trabalho descreve o programa em ASP implementado para resolver problemas de desenho

de protéınas, usando o ASP grounder gringo e o ASP solver clasp para encontrar os conjuntos de resposta

do programa.

Foram consideradas duas abordagens ao problema: numa considerámos que os aminoácidos de uma

protéına são mantidos fixos; na outra considerámos que é preciso determinar tanto os aminoácidos da

protéına a desenhar como as respectivas cadeias laterais.

Neste trabalho foram feitas duas implementações em ASP para o problema de desenho de protéınas.

Uma delas é uma codificação simples e a outra é uma codificação que usa múltiplos critérios de op-

timização. Também foram implementados algoritmos de dead-end elimination (DEE): Original DEE;

Simple Goldstein; e Simple Split.
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1Introduction

Proteins are biochemical compounds that take an important role in living cells. There are many different

types of proteins each having a different function in the world. Some of the proteins types are enzymes,

antibodies, structural components, receptors and transporters. The function of a protein is determined

by its structure, therefore it is important to determine the best protein structure for a specific function.

The study of the protein structure and the best structure of a protein for a given function can be useful

in numerous areas. Some of these areas that can use this knowledge are, for instance, the pharmaceutical

area where the understanding of some diseases can be improved or even to design new drugs or improve

the existing ones.

There are many problems related to proteins. Some of these problems are structure prediction,

protein design, energy calculation and mutation prediction. In this work we will focus on the protein

design problem. The protein design problem consists in determining the best components of a protein for

a given protein structure. This way it is possible to design the best protein for a specific function given

that the function of a protein greatly depends on its structure.

1.1 Contributions

The goal of this work was to develop a program that solves the protein design problem, i.e., that deter-

mines the best components of a protein to have a given function. There are many approaches that use

different methods to solve the protein design problem. The objective of this work was to use a different

approach from the existing ones. In this work we will develop a program to solve protein design problems,

which are NP-hard [38], using answer set programming.

Answer Set Programming (ASP) is a very recent approach to declarative problem solving[35]. Difficult

search problems, like protein design problems, can be solved using ASP. ASP is based on logic, hence

ASP solvers are applied to logic programs.

As the protein design problem is a search problem, our goal is to verify the capacity of ASP by

applying it to the protein design problem.

This work contributes with a different approach of the protein design problem, by using ASP, as

mentioned before. This works also contributes to the development of ASP by verifying its capacity of

solving this problem.

1



1.2 Outline

This document gives a detailed description of the work done, describing the protein design problem and

the ASP language.

In chapter 2 is described the background of this work. It is described the components of the proteins,

specifically amino acids. In this chapter is also detailed the structure of amino acids and the relevant

concepts for the protein design problem. The section 2.2 describes the protein design problem and the

existing software related to the protein design problem. The details of the protein design problem, the

used energy functions and the factors commonly considered, and the search space of the protein design

problem are described as well. Several available tools that are related to the protein design problem are

presented in section 2.3. The software tools presented are SCWRL4, SHARPEN, Rosetta and ProtSAT.

As our work is the development of a program to solve protein design problems using ASP, chapter 3

will give a description of ASP. This chapter will detail the concepts associated with ASP and the ASP

language, with some examples. The tools gringo and clasp will be described in section 3.3. An example

of a problem codification is given in appendix A which describes an implementation of an ASP program

to solve kakuro.

Chapter 4 will describe in detail the ASP programs developed to solve the protein design problem. In

section 4.1 will be described the definition of the problem solved, detailing the two approaches considered.

The two codifications made will be described in detail. The representation of the problem in ASP and

each rule implemented in ASP will be described in this chapter. Section 4.2 will describe the dead-end

elimination methods implemented. Dead-end elimination methods are commonly used in the protein

design problem.

The results of this work will be described in chapter 5. The instances used in the tests made are

described in detail in section 5.1. In this chapter are shown the results of the dead-end elimination

methods implemented and the results of the two codifications made (described in chapter 4). The

complete results can be seen at appendix D.

Finally, chapter 6 describes the conclusions of this work. In this chapter will also be mentioned the

future work, in section 6.1.
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2Proteins
Proteins have a very important role in life. There are many different types of proteins each having a

different function in the world. Some of the proteins types are enzymes, antibodies, structural compo-

nents, etc. In this chapter will be described the components of the proteins and then will be described

in particular the structure of amino acids and the connection between them. Moreover, it will be also

described the protein design problem and related tools.

2.1 Protein Structure

Proteins are biological compounds that are formed by a sequence of amino acids, also called residues.

The sequence of amino acids in a protein defines the three-dimensional structure into which the protein

folds and this structure is called the backbone. Each protein has a specific function and that function

greatly depends on its structure.

There are 22 standard amino acids and each amino acid has an amine and a carboxyl functional

groups that are common to every amino acid and a side-chain that varies. The side-chain is specific for

each amino acid, varying in physical properties.

Figure 2.11 illustrates the general structure of an amino acid. In Figure 2.1 is indicated the amine

group (NH2) and the carboxyl group (COOH). The ’R’ in Figure 2.1 represents the side-chain of the

amino acid. The carbon atom next to the carboxyl group is called α-carbon. Table 2.1 shows the 20

essentials amino acids and respective codes. The amino acids Selenocysteine and Pyrrolysine are not

represented in this table.

Each pair of amino acids in the sequence of amino acids in the protein forms a peptide bond and

these bonds form the backbone of the protein. The peptide bond is the bond between the amine group

of one amino acid and the carboxyl group of the other amino acid. When the peptide bond is formed, a

molecule of water (H2O) is also formed. Figure 2.22 illustrates a peptide bond between two amino acids.

Each amino acid has two dihedral angles called Φ and Ψ. A dihedral angle is measured on a sequence

of four atoms where the first three form a plan and the last three form another plan. The angle between

the two plans is the dihedral angel as shown in Figure 2.33.

1Adapted from
http://www.protocolsupplements.com/Sports-Performance-Supplements/wp-content/uploads/2009/06/

amino-acid-mcat1.png
2http://upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Peptidformationball.svg/

400px-Peptidformationball.svg.png
3http://www.structuralbioinformatics.com/images/chap7/Fig7_5%20Sign%20of%20the%20dihedral%20angle.jpg
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Figure 2.1: Amino Acid Structure

Name Code # Dihedral
3-Letter 1-Letter Angles

Alanine Ala A 0
Arginine Arg R 4
Asparagine Asn N 2
Aspartic Acid Asp D 2
Cysteine Cys C 2
Glutamic Acid Glu E 3
Glutamine Gln Q 3
Glycine Gly G 0
Histidine His H 2
Isoleucine Ile I 2
Leucine Leu L 2
Lysine Lys K 4
Methionine Met M 3
Phenylalanine Phe F 2
Proline Pro P 3
Serine Ser S 2
Threonine Thr T 2
Tryptophan Trp W 2
Tyrosine Tyr Y 3
Valine Val V 1

Table 2.1: List of Amino Acids

Figure 2.44 illustrates the Φ and Ψ angles of two amino acids bonded by a peptide bond. For example,

the Ψ angle shown in Figure 2.4 is the angle formed by two plans. The first plan contains the atoms N ,

Cα and C of Amino Acid 1. The second plan contains the atoms Cα and C of Amino Acid 1 and the

atom N of Amino Acid 2. Notice that Figure 2.4 illustrates the Ψ angle of Amino Acid 1 and the Φ

angle of Amino Acid 2 but each amino acid has the two dihedral angles.

The set of dihedral angles Φ and Ψ of all amino acids in a protein and the peptide bonds define the

backbone of the protein.

The side-chain of an amino acid can have up to four dihedral angles, χ1, χ2, χ3 and χ4. Not all amino

acids have the four degrees of freedom. Figure 2.5 shows part of a sequence of amino acids of a protein

that illustrates the different degrees of freedom of some amino acids[36]. Table 2.1 contains the number

4Adapted from https://wiki.cmbi.ru.nl/images/5/5d/Phipsi.jpg
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Figure 2.2: Peptide Bond Figure 2.3: Dihedral Angle

Figure 2.4: Φ and Ψ dihedral angles

of dihedral angles side-chain of each of the 20 essential amino5.

In Figure 2.5 the position 7 of the protein has the amino acid Valine (V) which has only one dihedral

angle (χ1), the position 8 has Arginine (R) which has four dihedral angles (χ1, χ2, χ3, χ4) and the

position 10 has Glutamic Acid (E) which has three dihedral angles (χ1, χ2, χ3).

Each conformation of the side-chain of an amino acid is called a rotamer[6, 5]. There are infinite

conformations, or rotamers, for each amino acid side-chain since the dihedral angles can be given with

arbitrary precision. It is commonly considered only a representative discrete set of dihedral angles and

this set is determined by a statistical analysis of the conformations that occur in nature[8]. It is also

common to group the set of dihedral angles in three subsets:

• gauche+(−120◦ ≤ χ < 0◦);

• gauche−(0◦ ≤ χ < 120◦); and

• trans(120◦ ≤ χ < 240◦).

Figure 2.6 shows nine representative conformations of the amino acid Valine (V) which only has one

dihedral angle (χ1)[36].

5Dunbrack rotamer library - http://dunbrack.fccc.edu/bbdep2010/

5
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Figure 2.5: Sequence of amino acids

Figure 2.6: Rotamers of Valine (V)

2.2 Protein Design

Each protein has a specific function that is greatly determined by its structure. Hence, it is very relevant

being able to determine the protein structure and respective amino acids for a specific function. Predicting

the sequence of amino acids that form a protein with a specific function can be very useful in different

areas such as therapeutics, treatment of diseases, the digestive process of animals or even the production

of biofuels.

In what follows it will be described the protein design problem. Next, it will be described some of the

existing tools related to the protein design problem.

2.2.1 Protein Design Problem

The protein design problem consists in determining a set of amino acids and respective side-chain confor-

mations to form a protein. The set of amino acids of the protein folds into a well-defined three-dimensional

structure[21]. As mentioned before this structure greatly determines the function of the protein. It is

6



relevant to design a protein for a specific function, i.e., determining the set of amino acids that folds into

a specific structure.

Many computational methods have been developed to solve the protein design problem[5, 21, 23, 18,

19].

The objective of protein design is to determine the set of amino acids that folds into a defined backbone

structure minimizing the energy of the protein.

The set of amino acids of a protein folds the protein into a well-defined three-dimensional structure

as said before. The process of folding depends on several factors such as the solvent, the temperature,

the concentration of salts, etc. Usually the folded protein minimizes the number of hydrophobic amino

acids exposed to water[7]. Therefore, most of the amino acids in the external part of the protein are

hydrophilic amino acids and the amino acids near the core of the protein are hydrophobic amino acids.

In the protein design problem is common to keep the backbone of the protein fixed and determine the

best side-chain conformation of each amino acid. So the structure of the protein, the amine and carboxyl

groups of each amino acid are fixed and given as input. The problem therefore becomes to determine

the set of rotamers that minimizes the total energy of a protein, i.e., identify the global minimum energy

conformation (GMEC). Hence, protein design becomes an optimization problem.

The energy of a protein can be given by

Eprotein = Ebackbone +
∑
i

E (r(i)) +
∑
i

∑
j,j<i

E (r(i), r(j))

where Ebackbone is the energy of the backbone, E (r(i)) is the energy of the interaction between the rotamer

r(i) at position i and the backbone of the protein, and E (r(i), r(j)) is the energy of the interaction

between rotamer r(i) at position i and rotamer r(j) at position j[36]. The interaction energy between

two rotamers is the sum of the interaction energies over all atoms of one rotamer with all atoms of the

other rotamer[25].

Given that it is common to keep the backbone fixed, the term related to the energy of the backbone

becomes irrelevant for the optimization problem and the energy function can be expressed as[44]:

E =
∑
i

E (r(i)) +
∑
i

∑
j,j<i

E (r(i), r(j))

There are two types of energy functions[24]. One type of energy function is obtained from a funda-

mental analysis of the forces between particles, based on physical laws. The other type of energy function

is called statistical effective energy function and is based on data derived from known protein structures.

There are several factors that can be taken into account to compute the energy functions. Some of

the considered factors are force-fields, van der Waals potential, hydrogen bonding, electrostatics, internal

coordinate terms, solvent interaction and entropy[17]. Not all of the methods used to compute energies

take all possible factors into account. This happens because considering all factors is computationally
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heavy. The computation of the energy terms has a great impact in protein design. Energy functions in

protein design are also called scoring functions.

The protein design problem, which is NP-hard [38], has an enormous solution space and therefore many

approaches were used to try to solve this problem. A protein design problem with m positions (amino

acids of the protein) and n rotamers per residue (or amino acid side-chain conformations), considering

the 22 standard amino acids results in a solution space of (22× n)
m

[5, 44]. If there are n rotamers per

residue and 22 different amino acids then there are 22 × n possible rotamers in each position of the

protein. If the protein has m positions, i.e., if the protein is formed by a sequence of m amino acids, then

there are (22× n)
m

possibilities. For example, a protein consisting in 100 amino acids and an average of

10 rotamers per amino acid results in (22× 10)
100 ≈ 10234 possibilities.

Many approaches have been developed to obtain the optimal or near optimal solutions for the protein

design problem. These approaches use different methods such as the Monte Carlo search algorithm[23],

dead-end elimination[18, 16], genetic algorithms[21, 7] and the branch-and-terminate algorithm[19].

There is a trade-off between accuracy and speed when finding optimal or near optimal solutions[44].

The stochastic algorithm Monte Carlo relies on probabilities and therefore it is not possible to be sure that

the solution obtained is optimal. The dead-end elimination method is deterministic and if it converges

then the solution is optimal, but it is generally slower than Monte Carlo.

Note that it is possible that an optimal solution for a protein design problem is not optimal when

tested experimentally due to approximations made and to possible inaccuracies in the energy function.

2.2.2 Tools

Many approaches using different methods have been developed to solve the protein design problem. There

are also some tools to help solving the protein design problem. Next will be described some of the existing

tools related to the protein design problem. Specifically we will describe the protein data bank and a

rotamer library.

The Protein Data Bank

The Protein Data Bank (PDB)6 was created in 1971. PDB is a single worldwide archive of structural

data of biological macromolecules[3]. In PDB we can find the description of the structure of a very large

number of proteins. This structure description can be downloaded as a PDB file, the most commonly

used format, or as a XML file, mmCIF file, FASTA sequence and others. These files with the structure

of a protein contain the amino acids that form the protein, their position in the protein, the side chain of

the amino acids and the three-dimensional coordinates of each atom of the residues. The files also contain

the list of contributors of the protein and the experimental technique used to determine the structure.

Anyone can submit a structure to the public archive, although each structure will be validated before

6http://www.pdb.org
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Figure 2.7: Protein 2L6J backbone

Figure 2.8: Valine rotamers probabilities

becoming part of the archive. In the website of the Protein Data Bank it is possible to see an image with

the model of a protein and in most cases it is also possible to interact with a three-dimensional model.

Figure 2.7 shows the backbone of the protein 2L6J that can be seen in the protein data bank website7.

Each color represents an amino acid. Only the backbone, i.e., the amine group and the carboxyl group

of each amino acid are represented in the figure (the side-chains of the amino acids are not represented).

Backbone-Dependent Rotamer Library

Numerous programs of protein design use discrete sets of rotamers. A library of rotamers is therefore

very important. Since 1993, a backbone-dependent rotamer library that is used in protein structure

determination, prediction and design has been available[40]. It is also available a 2010 version of the

Dunbrack backbone-dependent rotamer library8. This backbone-dependent rotamer library uses known

protein structures and a Bayesian formalism to build probabilities graphics for each amino acid. This

library consists in rotamers frequencies, mean dihedral angles, and variances as a function of the backbone

dihedral angles Φ and Ψ. A kernel density estimation is used in order to produce smooth and continuous

estimates of the rotamers probabilities. Figure 2.8 shows the probabilities of the rotamers dihedral angles

range of the Valine (VAL) amino acid as a function of the Φ and Ψ dihedral angles. These graphics can

be seen in the backbone-dependent rotamer library 9.

7http://www.pdb.org/pdb/explore/explore.do?structureId=2L6J
8http://dunbrack.fccc.edu/bbdep2010/
9http://dunbrack.fccc.edu/bbdep2010/Components/05PercSmoothed/VAL/05PercSmoothed.VAL.RotaProb.pdf

9

http://www.pdb.org/pdb/explore/explore.do?structureId=2L6J
http://dunbrack.fccc.edu/bbdep2010/
http://dunbrack.fccc.edu/bbdep2010/Components/05PercSmoothed/VAL/05PercSmoothed.VAL.RotaProb.pdf


Figure 2.9: SCWRL4 Architecture

2.3 Related Work

In the recent past have been developed programs that are related to the protein design problem. In

this section will be described some of these programs, in particular SCWRL4, SHARPEN, Rosetta and

ProtSAT.

SCWRL4

SCWRL4[22] is a program used for prediction of protein side-chain conformations, a simplification of the

protein design problem where the residues of a protein are kept fixed and only the side-chain conformations

are predicted. SCRWL4 does not guarantee a global minimum of the energy function when determining

the side-chain conformation of a protein. Instead, SCWRL4 tries to quickly produce a near optimal

result.

Figure 2.9 illustrates the architecture of SCWRL4[22]. The SCWRL4 architecture can be divided in

five modules as shown in the figure.

In the first module of the SCWRL4 architecture the input is processed. The input of SCWRL4 is

a PDB file containing four backbone atoms N , Cα, C and O per residue (atoms illustrated in Figure

2.4). The residues given as input are kept fixed and only the rotamer for that residue is determined. The

dihedral angles Φ and Ψ are calculated from the coordinates of each atom of the residues of the protein

given as input. For each residue, the Dunbrack backbone-dependent library is read to obtain the set

of possible rotamers. Then, the side-chain coordinates are built for all rotamers. A collision detection
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Figure 2.10: SHARPEN Architecture

algorithm is used to eliminate impossible pair of rotamers.

In the second module, the energy values for each rotamer and pair of rotamers are calculated. The

energy function used takes into account the repulsive and attractive van der Waals terms and hydrogen

bonding terms. The energy terms are calculated for the set of possible rotamers.

The third module is the graph construction. In this module is created an interaction graph that

represents the side-chain placement problem. In this graph, vertices represent residues and each edge

represents the existence of at least one pair of rotamers (one from each vertex connected by the edge)

with nonzero interaction.

Afterwards, the solution of the graph is determined. The edge decomposition method and dead-end

elimination are then applied to the interaction graph which has been constructed to find a solution within

a threshold.

In the last module is returned the output. SCWRL4 produces as output a PDB file with the whole

protein model identified. The PDB file therefore contains the three-dimensional coordinates of each atom

of the designed protein.

SHARPEN

SHARPEN is a scalable distribution of an open-source library for protein design and structure prediction[33].

Figure 2.10 shows the architecture of SHARPEN[33] which is a server-client architecture.

The core of SHARPEN (Systematic Hierarchical Algorithms for Rotamers and Proteins on an Ex-

tended Network) is called CHOMP and is deployed in the server-side. CHOMP (Combinatorial Hier-

archical Optimization for Macromolecular Problems) is an open-source software library directed to the

optimization of macromolecular structures. The CHOMP library implements several functions and mod-

ules to be used by the users. CHOMP provides data representations for atoms, amino acids and rotamers.

CHOMP also provides modular combinatorial optimization methods such as Monte Carlo and Simulated

Annealing to solve protein design and structure prediction problems.

There are two energy functions implemented in the library: an all-atom energy function and a force

field function.
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To solve the protein design and structure prediction problems is used an interaction graph to perform

combinatorial optimizations.

SHARPEN receives as input a python script called master script which uses the CHOMP library and

is ran in the server-side of the software.

SHARPEN has its core in the client-side of the software and makes the connection between the client

and the CHOMP library in server-side. SHARPEN uses a script called JobQueue for splitting the master

script into several ”Jobs” (work units). The JobQueue script distributes the several work units created

through the client-server communication system called Distributor to clients. Then the JobQueue receives

the results of the work units from the clients.

This architecture allows users to deploy the same script (master script) on a single processor, multiple

processors on the same machine, a local heterogeneous cluster, or a large-scale distributed computing

network, improving the scalability of the protein design and structure prediction problems.

Rosetta

Rosetta[39] is a well known open-source program. The Rosetta program can be used in several problems

related to proteins such as structure prediction, protein design, protein-protein docking and loop mod-

eling. This program can also score a given protein, i.e., it can calculate the energy of a given protein.

Rosetta uses the Dunbrack backbone-dependent rotamer library, described before, to restrict the possible

conformations to a discrete set when solving protein design problems for example.

The energy function used by Rosetta takes into account several factors making a more precise scoring

of proteins. Some of these factors are van der Waals potential, solvation effects, hydrogen bonding and

electrostatics.

One module of the Rosetta program that solves the protein design problem is RosettaDesign[32].

RosettaDesign takes as input the backbone coordinates of the target protein structure in PDB-format

and a specification of which residues to design. Therefore, RosettaDesign keeps fixed the structure of the

proteins and determines the set of residues and respective rotamers that minimize the total energy of the

protein. Note that Rosetta can determine only the side-chain conformation of a protein, can determine

the residues and respective side-chain and can design only specific positions of a protein, depending on

the specification given as input.

The backbone-dependent rotamer library is used to determine the discrete set of rotamers that will

be considered for the given protein. The RosettaDesign module uses a Monte Carlo optimization with

simulated annealing to find a solution.

The output of RosettaDesign is a file with the three-dimensional coordinates of each atom of all amino

acids and respective side-chain in PDB-format along with the energies of the redesign protein.

Rosetta current version is 3.410.

10http://www.rosettacommons.org/
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ProtSAT

In 2009 was developed a SAT-based program for protein design called ProtSAT[36]. The objective of

ProtSAT is to identify the global minimum energy conformation (GMEC) for a given protein structure.

ProtSAT considers 20 essential amino acids (the amino acids in table 2.1). ProtSAT also considers a

discrete set of possible rotamers. The backbone of the protein is kept rigid and is the input data of the

program. The energy function considered for the protein design is

Eprotein = Ebackbone +
∑
i

E (r(i)) +
∑
i

∑
j,j<i

E (r(i), r(j))

The energy values are pre-computed and then is applied a dead-end elimination method. The objective

of the dead-end elimination is to eliminate rotamers that cannot be in the GMEC. For example, if for

a given position i in the protein a rotamer a is always energetically more favorable than rotamer b then

the rotamer b can be removed from the set of possible rotamers for position i. After using the dead-end

elimination method, a SAT encoding is made. First, it is defined that each position of the protein has

exactly one rotamer. Then the constraints obtained by dead-end elimination are added. For example if

a pair of rotamers (a, b) is eliminated, meaning that the protein cannot have both rotamers a and b at

the same time in its structure, then the clause (¬a ∨ ¬b) is added.

ProtSAT makes a hierarchical decision. For each position of the protein, first is assigned the amino acid

for that position, then it is determined the range of the dihedral angle χ1 (gauche+, gauche−, trans).

The range of the dihedral angles χ2, χ3 and χ4 are determined as well. Finally the exact rotamer is

determined for that position, taking into account the amino acid and the range of the dihedral angles

already assigned.

Figure 2.11 illustrates the search tree for a position i[36]. In this figure are shown three branches of

a search tree as an example. In the first level of the tree is chosen the amino acid for position i. In the

second level is defined the range of the dihedral angle χ1, the third level is χ2 and so on. The leaf level

contains the exact rotamers that can be part of the solution. In the figure, χx represents that the range of

the dihedral angle of χx is gauche+, χ̃x represents that the range is gauche−, and ˜̃χx represents that the

range is trans. In the left branch of the tree is chosen Alanine (A) to occupy the position i of the protein.

Alanine only has one rotamer so there is only one possible rotamer (rk) in this branch of the search tree.

The second branch illustrated shows that the amino acid chosen is Lysine (K), then is chosen gauche−

as the range for χ1, gauche+ for χ2, gauche− for χ3 and gauche+ for χ4. At the leaf level, the rotamer

r′k is chosen for position i. The right branch of the tree shows the possibility of the Valine (V) amino

acid for position i. As Valine only has one degree of freedom that is χ1, only χ1 has different ranges in

the search tree. In the figure is shown the branch that corresponds to the attribution of gauche+ to the

range of the dihedral angle χ1 of the amino acid Valine. There are three possible rotamers for Valine

with χ1 = gauche+ (r′′k). Notice that only one leaf of the entire search tree can be in the solution of the
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Figure 2.11: ProtSAT search tree

protein design problem. Each position of the protein can only have one rotamer.
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3Answer Set Programming

In this chapter will be described in detail Answer Set Programming, starting with the general idea and

the logic concepts associated with it. Then will be described the Answer Set Programming language with

some examples for a better understanding. In the end of this section we will describe two tools commonly

used.

3.1 Answer Set Programming Concepts

Answer Set Programming (ASP) is an approach to declarative problem solving. ASP is commonly

applied to difficult, NP-Hard, search problem. The idea is to create a program that is the definition

of the problem, the constraints and facts, instead of creating a program that is an algorithm to solve

the problem. Knowledge representation and nonmonotonic reasoning, logic programming with negation,

databases and Boolean constraint solving are the roots of ASP[12]. In the ASP approach, a problem is

solved by representing the problem as a logic program such that the solutions of the program correspond

to the solutions of the problem. An ASP solver can then be applied to the logic program to compute (i.e.

search for) the solutions.

An ASP program[29] is a set of rules. A rule is a representation of some knowledge, has a head and a

body and is represented as

Head← Body.

If the rule has no head, then is in the form

← Body.

and is a constraint. For example, if we have the rule

← p.

it means that p must not hold.

If the rule has no body it is considered a fact and the symbol ‘←’ is dropped. The rule

p.
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means that p must hold.

In general, a rule has the following form

L1, L2, ..., Lk, not Lk+1, ..., not Ll ← Ll+1, ..., Lm, not Lm+1, ..., not Ln.

where Li is a literal and not Li is the negation of the literal Li. The concept associated with the symbol

not is negation as failure, i.e., a literal Li is considered to be false if there is nothing that says that Li is

true.

If the head of a rule has cardinality greater than 1 then is a disjunctive rule. A program with

disjunctive rules is considered a disjunctive program. A normal logic program has only rules without

head or rules where the head has only one positive literal and no negative literals.

Logic programs can have several answer sets. An answer set[29, 14, 2], or stable model, of a logic

program is a set of literals that satisfies all the rules of the program, i.e., that make all the rules of the

program true. For instance, if we consider the program with the following rules

p ← q.

q ← not r.

This program has one stable model that is {q, p}. Notice that not r it is not included in the stable model

because only positive literals are considered in the answer set. Therefore a stable model is the answer of

a logic program, which contains the literals that must be true so that there are no conflicts between the

rules of the program.

A more formal definition of a stable model (or stable set) is presented by Gelfond et al[14]:

Definition 1 (Stable Set)

Let Π be a logic program. For any set M of atoms from Π, let ΠM be the program obtained from Π by

deleting

1. Each rule that has a negative literal ¬B in its body with B ∈M , and

2. All negative literals in the bodies of the remaining rules.

Clearly, ΠM is negation-free, so that ΠM has a unique minimal Herbrand model. If this model coincides

with M , then we say that M is a stable set of Π.

Most ASP solvers use grounders as front-end. A grounder is a tool that for a given logical program

computes an equivalent variable-free version of the program (a ground program), i.e., replaces the variables

in the rules with all possible instantiations. The grounders lparse1 and gringo2 are the most commonly

used grounders for ASP. Figure 3.1 shows the general process of solving an ASP program, i.e., shows

1http://www.tcs.hut.fi/Software/smodels/
2http://potassco.sourceforge.net/
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Figure 3.1: General solving process

the input (logic program) accepted by the grounder which gives its results to the solver and the solver

outputs the answer sets of the input program.

Answer set programming can be applied not only to decision problems but also to optimization

problems. There are two functions in ASP for optimization problems: minimize and maximize. It

is possible to optimize by two different types of criteria. It is possible to optimize by the number of

instances of specific predicates; for instance, it is possible to minimize the number of instances of the

predicate x. It is also possible to optimize by weights, i.e., it is possible to assign a weight to each

predicate and then optimize the sum of the weights of the instances of the predicates3. Therefore, it is

possible to compute the optimal solution, if there is one, applying ASP to optimizations problems. If

the problem does not have a solution, then the information that the program is unsatisfiable is returned.

In ASP, the maximizations can be transformed in minimizations and the negative weights in positive

weights, so that the solving process can be more efficient[10, 41].

Answer set programming is very flexible and it is possible to have multi-criteria optimization[10]. This

is good for problems that have multiple criteria for optimization, for example, a problem with cost and

rewards where it is desirable to minimize the cost and maximize the rewards. It is also possible to assign

different priorities to different optimization criteria, hence allowing ASP to solve more different types of

problems. Although it is possible to assign the same priority to different optimization criteria, this must

be done carefully. Assigning the same priority may not lead to the expected results. After transforming

maximizations in minimizations and transforming negative values in positive ones, ASP will sum the

optimization values if there is more than one optimization criterion with the same priority. Hence, the

optimization values of different optimization criteria with the same priority should have the same unit.

For example, if there are two optimization criteria with the same priority, one regarding Euro values and

other Great Britain Pounds, the sum of the two may not lead to the desired result. It is necessary to

adjust the optimization values.

3http://heanet.dl.sourceforge.net/project/potassco/potassco_guide/2010-10-04/guide.pdf
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3.2 Answer Set Programming Language

The input languages of lparse and gringo, the two grounders mentioned before, are very similar to the

Prolog4 language. For example the rule

p ← q.

Is written in lparse or gringo as

p :- q.

In ASP it is common to used predicates. Predicates in ASP are identical to the ones in Prolog. A

predicate is a literal of the form:

p(n1, n2, ..., nn).

where ni is an argument of the predicate p. In ASP the name of the predicates cannot start with a capital

letter.

The arguments of a predicate can start with capitalized letters or lower letters. Arguments starting

with capitalized letters mean that they are not instantiated. Arguments starting with lower letters mean

that they are instantiated with objects of the world.

ASP is considered a closed world, i.e., only the known facts are considered to be true and only the

objects that appear in some fact are considered to exist. Everything else is considered to be false or do

not exist.

For a better understanding of the language, we will show a simple example of predicates, rules and

ASP program. We will define the following predicate for this example:

fatherOf(X,Y).

The predicate fatherOf represents a father-son relationship and indicates that X is the father of Y. Notice

that the arguments start with a capitalized letter, therefore they are not instantiated.

An instance of this predicate could be, for example

fatherOf(john, peter).

meaning that ’john’ is the father of ’peter’. As ’john’ and ’peter’ are instances, the arguments of

the predicate fatherOf start in lower case letters as said before. In this case, ’john’ and ’peter’ are

considered the objects of the world.

Now consider the rule

father(X) :- fatherOf(X,Y).

The above rule introduces a new predicate father that indicates that X is a father. This rule represents

4http://www.swi-prolog.org/

18

http://www.swi-prolog.org/


that if X is the father of Y then X is a father. The X argument of the predicate fatherOf matches the X

argument of the father predicate. The value of X is the same in both predicates. In this rule, Y can be

discarded because its value is irrelevant. Therefore the rule can be rewritten as

father(X) :- fatherOf(X, ).

The ’ ’ symbol represents any value.

The following program:

fatherOf(john,peter).

father(X) :- fatherOf(X,_).

has one stable model:

Answer: 1

Stable Model: fatherOf(john,peter) father(john)

One significant difference between ASP and Prolog is that ASP accepts choice rules[30]. An example

of a choice rule is

{s,t} :- p.

This rule means that if p holds then the atoms s and t can be included in the stable model arbitrarily.

We will give an example of the use of choice rules. Consider the following program written in ASP:

{eatCake, eatChocolate} :- goToParty.

goToParty :- not occupied.

This program intuitively represents that if we go to a party we can eat cake and/or chocolate or do not

eat nothing at all (first rule); it is our choice. To go to a party we must not be occupied (second rule).

This program has four answer sets:

Answer: 1

Stable Model: goToParty

Answer: 2

Stable Model: eatCake goToParty

Answer: 3

Stable Model: eatChocolate goToParty

Answer: 4

Stable Model: eatCake eatChocolate goToParty
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The answer sets of the program represent that, once nothing says we are occupied, then we can go to the

party. Therefore, all answer sets contain the literal ’goToParty’. As we go to the party we can choose

not to eat (Answer 1), eat only cake (Answer 2), eat only chocolate (Answer 3) or eat cake and chocolate

(Answer 4).

It is possible to include numerical bounds on a choice rule. A number immediately before the choice

rule represents the lower bound and a number immediately after the choice rule represents de upper

bound. So if we have {eatCake, eatChocolate}1 this means that the answer sets must include at most

1 atom of the set {eatCake, eatChocolate}, i.e., an answer set can contain eatCake or eatChocolate or

none, but cannot contain both. If we have 1{eatCake, eatChocolate} this means that the answer must

include at least 1 atom of the set {eatCake, eatChocolate}, i.e., an answer set can contain eatCake

and/or eatChocolate, and so must have at least one of them.

Another difference between ASP and Prolog is that ASP has two types of negations: strong negation

and weak negation. The weak negation is negation as failure, i.e., a literal is considered to be false if

nothing says that it is true. On the other hand, in strong negation a literal is considered false if that

literal is specifically defined as false. In ASP the weak negation is represented by ’not’ and the strong

negation by ’-’. An example of each type of negation in ASP is shown next.

use hat :- not raining.

use hat :- -raining.

The first rule illustrates the use of negation as failure (weak negation). This rule represents that we use

a hat if we can assume that it is not raining. The fact that it is raining is an unknown information

and therefore is considered to be false. The second rule represents strong (or ”classical”) negation and

indicates that we use a hat if we know for sure that it is not raining. Notice that in this rule being able

to assume that it is not raining is not enough to use a hat.

An example of an ASP encoding is in appendix A. In this appendix is described in detail the encoding

of a very well known game called kakuro.

3.3 Tools

There are several answer set programming solvers. In 1995 was developed smodels5[41]. Smodels is used

with lparse as grounder for the logic program. Another ASP solver is dlv [27] which became available in

1997. A difference between smodels and dlv is that dlv implements DLP (Disjunctive Logic Programming)

which allows logic programs to have disjunctions in the rules’ head. There are some ASP solvers that

are SAT-based, i.e., based on SAT solvers. Assat [31], made available in 2002, is one SAT-based ASP

solver. Another SAT-based ASP solver is cmodels[15, 28]. Cmodels uses the SAT solver simo as a search

engine. Cmodels also computes answer sets to disjunctive logic programs and for logic programs with

5http://www.tcs.hut.fi/Software/smodels/
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choice rules. In 2007 was created clasp[13, 12], a conflict-driven ASP solver. This solver is used with

lparse or gringo as grounder. Clasp with gringo[11] as grounder will be used in this work.

Gringo[11] works as a grounder for clasp, as said before. A grounder is a tool that computes a

variable-free program (ground program) for a given logical program given as input, i.e., makes a version

of the initial program with all the rules instantiated. Gringo includes some aggregate functions allowing

more flexibility to solve problems. Some of these functions are #count, #sum, #minimize, #maximize,

#even, #odd, etc. The #count function corresponds to the syntax used in the choice rules (or cardinality

constraints). So when we write l{...}u we are defining that the count of the literals inside brackets are

greater than or equal to l and lesser than or equal to u. The same happens with the #sum function and

the weight constraints. It is possible to associate weights with literals and use them in constraints. To

associate a weight with a literal is used the symbol ’=’. If we write l[...]u we are defining that the

sum of weights of literals inside square brackets is bounded by the lower bound l and the upper bound

u. Consider the following rule

1[p(X) = X)]7.

In this rule, the ’=’ symbol is an attribution of weight. The rule is associating the weight X with literal

p(X), where X is the argument of p. The square brackets in the rule mean that the sum of weights of the

instances of the predicate p must be between 1 and 7.

Other very important functions included in gringo are the #maximize and #minimize functions. These

functions allow solving optimization problems. It is possible to maximize (or minimize) the count of a

predicate, the sum of certain weights, and so on. It is also possible to have more than one optimization

criterion[10] and give different weights to each criterion. An example of a maximization rule is:

#maximize[p(X)=X].

which means that the objective is to maximize the sum of weights of the predicate p, where p(X) has

weight X.

The tool clasp[13, 12] is an ASP solver. Clasp uses two concepts of two great areas of artificial

intelligence[13]:

1. The concept of conflict-driven learning from SAT

2. The concept of nogoods from Constraint Satisfaction Problems (CSP).

Clasp is different from the other ASP solvers because it was originally designed, created and optimized

for conflict-driven ASP solving, using the concept of nogoods. The architecture of clasp is shown in figure

3.2[13].

Clasp is a highly configurable ASP solver. It provides some options for the user to configure the

solver[9]. An example of these options is the --heuristic option. This option allows to choose
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Figure 3.2: Clasp’s Architecture

which heuristic to be used by clasp. Another option is --trans-ext which determines whether choice

rules or cardinality and weight constraints are transformed into normal rules during the parsing phase.

--sat-prepro is a very useful option. This option allows doing a SAT-based preprocessing once the

program is transformed into Boolean constraints. It is also possible to adjust the restart policy used

by clasp. To change the restart policy, clasp provides the option --restarts. There are more options

available and to see them one has to use the option --help.

There are some variants of clasp like claspD, claspar, clingo, etc[12]. ClaspD is oriented to NPNP

problems and accepts disjunctive logic programs. There is also a variant of clasp that is focused on

parallelization. Claspar is a distributed version of clasp which uses parallel processing during search.

There is a version of clasp that results from the union between gringo, the grounder, and clasp, the solver,

called clingo. Some problems, like planning problems, require some iteration during the computation of

the solutions. Iclingo works with incremental programs which have incremental variables.
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4Implementation

The protein design problem is a very interesting problem. On the other hand, answer set programming is

a recent approach to declarative problem solving. Our goal is to solve a simplified version of the protein

design optimization problem using answer set programming.

In this chapter will be presented the codifications made to solve the problem using answer set pro-

gramming, more specifically a simple codification and alternative codification, one of them using two

optimization criteria. In this chapter will also be described the implementation of Dead-End Elimination

(DEE) methods using answer set programming and Java.

4.1 Problem Codification

Two approaches were developed to solve a simplification of the protein design problem. The protein design

problem consists in determining the set of amino acids and respective side-chain that form a protein with

a specific function, minimizing the total energy of the protein. In our case we made a simplification of the

problem. It is considered that the backbone of the protein is fixed and only the side-chains are designed.

It is also considered only a discrete set of rotamers using the Dunbrack Backbone-Dependent Rotamer

Library. These rotamers are given as input. For the energies is used the source code of Rosetta to compute

the score of the interactions between each possible rotamer and the backbone and the interactions between

each pair of rotamers at different positions. The positions to design is also given as input, therefore it is

possible to design the entire protein or only a subset of specific positions.

Figure 4.1 illustrates the considered protein design problem. The figure shows that we use Rosetta to

compute the interaction energies, using the PDB file of the protein. The PDB file is also used to define

the positions of the protein to be designed. Figure 4.1 also shows that three types of data are given as

input: the positions of the protein to be designed; the problem codification; and the interaction energies.

The output is the set of rotamers that minimizes the total energy of the protein.

In a first approach was developed an ASP program to determine the optimal set of rotamers for a

given protein. The program takes as input the backbone positions of the protein to design, the residues of

each position and the energy values of all rotamers considered using the score function of rosetta and the

rotamer library mentioned before. The program produces as output a side-chain conformation for each

protein position designed. In this first approach only a side-chain prediction is made, i.e., the backbone

of the given protein is kept fixed and the residues (or amino acids) of the protein received in the protein

backbone are kept fixed as well. Only the best set of rotamers is determined.
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Figure 4.1: Schema of the considered problem

The second approach to the problem is similar to the first approach. The difference between the two

approaches is that the second one does not keep the residues fixed. The backbone of the protein given as

input is fixed and the amino acids and respective side-chains are flexible. The objective is to determine

the set of amino acids and respective side-chain that minimizes the total energy of the protein.

The goal of the first approach is the same of the software SCWRL4. This approach can be seen as a

sub-problem of the protein design problem where the amino acids are already determined. The second

approach has the same objective of ProtSAT: predict amino acids and respective side-chain.

The minimization criterion for both approaches is the following total energy function:

E =
∑
i

E (r(i)) +
∑
i

∑
j,j<i

E (r(i), r(j))

where E (r(i)) is the energy of the interaction between the rotamer r(i) at position i and the backbone

of the protein, and E (r(i), r(j)) is the energy of the interaction between rotamer r(i) at position i and

rotamer r(j) at position j. As referred before these energy scores are computed by the score function of

rosetta.

Clasp and gringo were used to solve the ASP program encoded in both approaches mentioned above.

The use of these tools and the fact that the two approaches were developed using answer set programming

are the main differences from the existent approaches. Using a different language, hence different tools,

can improve the resolution of the protein design problem.

The two approaches are similar and the difference between them is the input. In the first approach

the residues of the protein are given as input and in the second approach are not. Hence, it will be

presented a single codification that works on both approaches.

All the code lines will be numerated so that they can be referred more than once.
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4.1.1 Simple Codification

To encode this problem using answer set programming, it is first necessary to represent the input in

predicates. It is assumed that the positions of the protein to design, the possible rotamers for each

position and respective energy score for the interaction with the backbone of the protein and the energy

scores for the interaction between each pair of possible rotamers at different positions are received as

input. For the first approach, for which only side-chain conformation prediction is made, it is also

received as input the residue (or amino acid) on each position to be design.

To represent the positions of the protein to be designed it is created the predicate position (4.1.1.1)

with one argument.

position(Pos). (4.1.1.1)

The argument represents the position identifier and is a positive integer number.

For the representation of the possible rotamers is used the following predicate with four arguments.

possibleRotamer(Pos,Id,Amin,Energy). (4.1.1.2)

The first argument represents the position identifier for that rotamer, i.e. identifies the correspondent

position of the protein in which that rotamer can be placed. The second argument is a unique identifier

for that rotamer within the protein position. This is a positive integer number and is used, along

with the position identifier, to identify uniquely the rotamer. Therefore, to each rotamer (or side-chain

conformation) it is assigned an unique identifier. The third argument represents the residue correspondent

to the rotamer and is represented by the three letter code (in lower case) shown in table 2.1. The fourth

and last argument of the possibleRotamer predicate (4.1.1.2) corresponds to the energy score of the

interaction between the rotamer and the backbone. This energy value must be an integer number.

To represent the energy scores of the interaction between two rotamers at different positions, is used

the predicate interEnergy (4.1.1.3).

interEnergy(Pos1,Id1,Pos2,Id2,Energy). (4.1.1.3)

The first two arguments correspond to one rotamer identifier (position and unique identifier within the

position), as mentioned in the possibleRotamer predicate (4.1.1.2). The third and fourth arguments

identify, similarly to the firsts arguments, the other rotamer present in the interaction. Finally, the last

argument is the energy score of the interaction between the two rotamers identified in the previous ar-

guments. As in the possibleRotamer predicate, this value is an integer number. To avoid duplicated

information, since the interaction between two rotamers are two-sided, only one-side interaction is repre-

sented (since they are equal) and it is always considered that the position of the first rotamer identified

in the predicate is lesser than the position of the second rotamer. For example, if we want to represent

the interaction between the first rotamer of position 1 of the protein (e.g. possibleRotamer(1,1,5))
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and the first rotamer of position 2 (e.g. possibleRotamer(2,1,-6)), only the interaction from position

1 to position 2 is represented. Therefore, if that interaction has, for example, score 3, we will use the

following predicate:

interEnergy(1,1,2,1,3). (4.1.1.4)

And not:

interEnergy(2,1,1,1,3). (4.1.1.5)

For the first approach, in which the residue for each position is given as input, it is used the predicate

residue (4.1.1.6) with two arguments.

residue(Amin,Pos). (4.1.1.6)

The first argument is the three letter code for the amino acid (see table 2.1). The second argument

corresponds to the position identifier of the protein.

With these predicates, all the input information is represented. However, we need more predicates to

represent more information.

To identify all the possible amino acids that exist it is used the following predicate:

aminoAcid(Amin). (4.1.1.7)

where Amin is the three letter code of the amino acid.

It is also necessary to represent that a rotamer is part of the solution, i.e., that a specific rotamer

belongs to the protein designed. For that purpose is used the predicate rotamer (4.1.1.8) with three

arguments:

rotamer(Pos,Id,Amin). (4.1.1.8)

where Pos and Id identify the rotamer (position and identifier) and Amin represents the amino acid.

Given the need to represent that a rotamer is part of the final solution, it is necessary to represent

that a specific energy score is part of the final solution. For this information is used the predicate energy

(4.1.1.9).

energy(Pos1,Id1,Pos2,Id2,Energy). (4.1.1.9)

This predicate is very similar to the interEnergy (4.1.1.3) predicate mentioned before and like the

interEnergy predicate only one side of the interaction is represented (Pos1 must not be greater than

Pos2). There are two differences between the interEnergy predicate and the energy predicate (4.1.1.9).

One is that the energy predicate represents that the interaction energy belongs to the final solution. The

second difference is that this predicate is used to represent the interaction between a rotamer and the

backbone as well. This is made by repeating the identifier of the rotamer, i.e., if the pair (Pos1,Id1) is

equal to pair (Pos2,Id2) which means it is an interaction between the rotamer identified by (Pos1,Id1)
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and the backbone. Notice that the interEnergy predicate can not have duplicated identifiers because it

represents an interaction between two different rotamers at different positions.

At this point we have all the necessary information to represent the problem to solve. To solve

our problem now it is necessary to represent the rules of the problem. We will now describe each rule

individually so that the whole program can be understood.

The main idea is to define the conditions of the problem. The first thing needed is to define that

each protein position to be designed must have exactly one residue (or amino acid). We can write this

restriction in ASP as

1{residue(Amin,Pos) : aminoAcid(Amin)}1 :- position(Pos). (4.1.1.10)

The brackets in this rule, as mentioned in section 3.3, mean that there must be at least one predicate

(of the ones inside the brackets) and at most one predicate. The predicate residue is the one limited

by the boundaries. The symbol ’:’ defines the domain of the predicate before it. In this case, it means

that the domain of the predicate residue, more precisely the argument Amin, is defined by the predicate

aminoAcid (4.1.1.7). Hence, this rule means that for each predicate position (4.1.1.1) must exist exactly

one predicate residue (4.1.1.6) in which the argument Amin must exist in the aminoAcid predicate. This

rule is not necessary for the approach in which the residues of the protein are kept fixed and given as

input.

It is necessary to define that each position must have one rotamer and only one. This rule is similar

to the rule (4.1.1.10).

1{rotamer(Pos,Id,Amin) : possibleRotamer(Pos,Id,Amin, )}1 :- position(Pos). (4.1.1.11)

This rules means that for each position there must exist one rotamer and that rotamer belongs to the set

of possible rotamers (defined by the possibleRotamer predicate (4.1.1.2)).

With the rules (4.1.1.10) and (4.1.1.11) it is possible that the rotamer in a certain position is from a

different amino acid than the residue of that position. So it is necessary to restrict the rotamers so that

there are no contradictions. For this purpose is defined the following rule:

:- position(Pos), rotamer(Pos,Id,Amin1), residue(Amin2,Pos),

Amin1 != Amin2.
(4.1.1.12)

This rule means that there cannot exist a rotamer at a position (Pos) that belongs to a different amino

acid (Amin1) than the residue of that position, i.e., the argument Amin1 of the rotamer predicate cannot

be different from the Amin2 argument of the residue predicate for a specific position Pos.

With these three rules ((4.1.1.10), (4.1.1.11) and (4.1.1.12)) we can have a solution for our problem.

We said that each position has one and only one residue, one and only one rotamer and that they belong

to the same amino acid. However, our problem consists not only in giving a possible solution but also
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giving the solution with the minimum energy score. For this we need to define the energy contributions.

It is necessary to define two types of energy contributions. The first one is the energy between a rotamer

and a backbone. So it is necessary to say that if a rotamer belongs to the solution, then its energy score

(interaction between that rotamer and the backbone of the protein) belongs to the solution too. For that

it was defined the following rule:

energy(Pos,Id,Pos,Id,Energy) :- rotamer(Pos,Id,Amin),

possibleRotamer(Pos,Id,Amin,Energy).
(4.1.1.13)

This rule means that if there is a possible rotamer (represented by the possibleRotamer predicate

(4.1.1.2)) and that rotamer is present in the solution (represented by the rotamer predicate (4.1.1.8))

then the energy score of the rotamer (the Energy argument in the possibleRotamer predicate) is present

in the solution. The predicate energy (4.1.1.9), as said before, represents the energy scores present in

the final solution.

The second type of interactions are the interactions between two rotamers. It is necessary to define

that if two rotamers belong to the solution and they have an energy interaction then that energy score

belongs to the solution. That is made by the rule (4.1.1.14).

energy(Pos1,Id1,Pos2,Id2,Energy) :- interEnergy(Pos1,Id1,Pos2,Id2,Energy),

rotamer(Pos1,Id1, ), rotamer(Pos2,Id2, ).
(4.1.1.14)

This rule represents exactly what was said above. If there are two rotamers in the solution (the rotamer

predicate) and they have an interaction energy (represented by the interEnergy predicate (4.1.1.3))

then the respective energy score also belongs to the solution. Note that once there are no interactions

duplicated by the interEnergy predicate, there will be no duplicated interactions in the solution as well.

Finally, to extract the optimal solution, i.e., the solution with the minimal energy score, the optimiza-

tion rule (4.1.1.15) needs to be defined.

#minimize[energy( , , , ,Energy) = Energy]. (4.1.1.15)

This rule is to minimize de sum of the energies present on the solution, represented by the energy

predicate(4.1.1.9) where each predicate has as weight the value of the Energy argument. The square

brackets in the rule mean that the minimization criterion is the sum of the weights of the energy

predicate, as referred in section 3.3.

With this set of rules ((4.1.1.10)-(4.1.1.15)) we can solve the problem where we are interested in the

predicate rotamer which represents that the rotamer belongs to the final solution. The solution is the

optimal solution once the minimizing rule guarantees that the solution has minimal total energy.

The complete program with all the rules mentioned in this section can be seen in appendix B.1.1.

Initial tests showed that this codification cannot solve our problem efficiently. Tests with 20 positions

28



to design showed that it takes more than a day to solve, considering that the residues are not given as

input (second approach) or it does not solve at all, running out of memory. Therefore we tried a different

codification, using two optimization criteria.

4.1.2 Double Optimization

We had to try a different approach to the problem since the previous approach (4.1.1) was not enough.

The idea is to use two optimization criteria. In our problem there are two types of interactions,

one between a rotamer and the backbone of the protein and another between two rotamers of different

positions. Each of this interactions has an energy score, represented in the predicates described in section

4.1.1. These scores can be either positive or negative, therefore we can use this information to split an

optimization criterion into two.

The optimization method in clasp does not accept negative values. Moreover, gringo, the most

common grounder used with clasp (see section 3.1), normalizes all the values so that clasp can use those

values during the search for the optimal solution. For this reason was tried a different approach where

only positive scores were considered.

The idea is to split each predicate with energy score information in two, one with the non-negative

scores and one with the negative scores. This way all the energy scores can be represented in positive

numbers.

The rules described in section 4.1.1 must be adapted for this new model. The predicates representing

the input information must also be reformulated so that they can support the identification of the positive

and negative energies. In what follows will be described the predicates and rules reformulated.

To represent the positions of the protein to be designed it is used the predicate (4.1.1.1). Given

that this predicate has no information about energies it does not change from the previous codification.

However, to represent the possible rotamers considered, the predicate (4.1.1.2) has to be split into two,

one for the rotamers with a non-negative interaction score with the backbone of the protein and another

for the negative ones. Hence the possibleRotamer predicate will be replaced by the predicates (4.1.2.1)

and (4.1.2.2).

possiblePRotamer(Pos,Id,Amin,Energy). (4.1.2.1)

possibleNRotamer(Pos,Id,Amin,Energy). (4.1.2.2)

The predicate possiblePRotamer has the same information as the possibleRotamer predicate(4.1.1.2)

except for the fact that it only applies to rotamers with a non-negative energy score. The possibleNRotamer

predicate is to represent the rotamers with a negative energy score. Therefore the Energy argument in

the possibleNRotamer predicate is a positive integer number. The information about the energy being

negative is already in the name of the predicate.

Other predicate that has information about energy scores is the interEnergy predicate (4.1.1.3)

which represents the interaction energy between two rotamers at different positions. Similarly to the
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possibleRotamer predicate, this predicate will be split in two as well.

interPEnergy(Pos1,Id1,Pos2,Id2,Energy). (4.1.2.3)

interNEnergy(Pos1,Id1,Pos2,Id2,Energy). (4.1.2.4)

The interPEnergy predicate (4.1.2.3) represents a non-negative interaction between two rotamers at two

different positions. This predicate, like (4.1.1.3), is used to represent the interaction between two rotamers

and the position of the first rotamer (Pos1) is lesser than the position of the second rotamer (Pos2). There

are no duplicated interactions. Analogously, the interNEnergy predicate (4.1.2.4) represents a negative

interaction between two rotamers. In both predicates ((4.1.2.3) and (4.1.2.4)) the Energy argument is a

positive integer and the information about whether is negative or not is in the name of the predicate.

The predicates (4.1.1.6), (4.1.1.7) and (4.1.1.8) described in section 4.1.1 remain unchanged for this

codification. These predicates represent the residue in a specific position of the protein, a possible

amino acid and a rotamer that belong to the final solution, respectively. These predicates do not have

information about energy score and therefore remain unchanged.

The last predicate to be reformulated is the energy predicate (4.1.1.9) which represents an interaction

score, either between two rotamers or a rotamer and the backbone, that belongs to the final solution.

This predicate will also be split in two different predicates, one for non-negative scores and another for

negative scores.

pEnergy(Pos1,Id1,Pos2,Id2,Energy). (4.1.2.5)

nEnergy(Pos1,Id1,Pos2,Id2,Energy). (4.1.2.6)

The predicates (4.1.2.5) and (4.1.2.6) represent, respectively, that a non-negative and a negative en-

ergy score belong to the final solution. Like in the possibleNRotamer predicate (4.1.2.2) and in the

interNEnergy predicate (4.1.2.4) described above, the Energy argument in nEnergy predicate is a posi-

tive integer.

At this point we have all the necessary predicates necessary described and will now start to describe

the rules used. Some rules remain unchanged from the simple codification (section 4.1.1) and we will

refer them. Only the rules involving the modified predicates will be reformulated.

The rule (4.1.1.10) which says that each position has exactly one residue (or amino acid) remains

unchanged as well as the rule (4.1.1.11) which says that each position has exactly one rotamer. The rule

of consistency (4.1.1.12) that imposes that the rotamer and the residue at each position refer to the same

amino acid also remains unchanged.

The rule that defines that if a rotamer belongs to the solution and has an energy score then that score
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also belongs to the solution (4.1.1.13) will be split in the following two rules:

pEnergy(Pos,Id,Pos,Id,Energy) :- rotamer(Pos,Id,Amin),

possiblePRotamer(Pos,Id,Amin,Energy).
(4.1.2.7)

nEnergy(Pos,Id,Pos,Id,Energy) :- rotamer(Pos,Id,Amin),

possibleNRotamer(Pos,Id,Amin,Energy).
(4.1.2.8)

The rule (4.1.2.7) means that if a rotamer with a non-negative energy score belongs to the solution then

the non-negative energy score also belongs to the solution. Analogously, the rule (4.1.2.8) means that if

a rotamer with a negative energy score belongs to the solution then the negative score also belongs to

the solution.

The rule (4.1.1.14) described in section 4.1.1 will be split into two different rules.

pEnergy(Pos1,Id1,Pos2,Id2,Energy) :- interPEnergy(Pos1,Id1,Pos2,Id2,Energy),

rotamer(Pos1,Id1, ), rotamer(Pos2,Id2, ).
(4.1.2.9)

nEnergy(Pos1,Id1,Pos2,Id2,Energy) :- interNEnergy(Pos1,Id1,Pos2,Id2,Energy),

rotamer(Pos1,Id1, ), rotamer(Pos2,Id2, ).
(4.1.2.10)

The rule (4.1.2.9) means that if two rotamers belong to the solution and they have a non-negative

interaction energy score then that score also belongs to the solution and the rule (4.1.2.10) means the

same but for the negative interaction energies.

At this point we have all the rules described except the optimization rules. The idea of this implemen-

tation is to use multi-criteria optimization. For that we want to minimize all the positive energies and at

the same time we want to maximize all the negative energies so that we can have the best solution, i.e.,

the solution with the lower total energy. We also want to minimize the positive energies and minimize the

negative energies with the same priority. Only this way we can guarantee the optimal solution. It is not

desirable neither to minimize first the positive energies and then within the minimum positive energies

maximize the negative nor vice-versa. It is very important that both criteria have the same priority. As

mentioned in the end of section 3.1, the maximization will be transformed in a minimization and the

optimization values of the two criteria will be summed. This does not affect the optimality of the solution

because the optimizations values (in this case, the energies values) have the same unit.

In this codification there are two optimization rules.

#minimize[pEnergy( , , , ,Energy) = Energy @1]. (4.1.2.11)

#maximize[nEnergy( , , , ,Energy) = Energy @1]. (4.1.2.12)

The optimization rule (4.1.2.11) is to minimize all the non-negative energy scores that belong to the
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solution, defined by the pEnergy predicate (4.1.2.5). The symbols ’@1’ at the end of the rule means that

this optimization criterion has priority 1. Analogously the optimization rule (4.1.2.12) is to maximize

all the negative energy scores that belong to the solution, defined by the nEnergy predicate (4.1.2.6).

The symbols ’@1’ at the end of the rule mean that this optimization criterion has priority 1 so that both

criteria have the same priority.

The complete program can be seen at appendix B.2.1.

With some initial tests this codification did not reveal more efficient than the codification described

at 4.1.1. However we noticed that the main problem was the memory. Both codifications run out of

memory very quickly for 20 positions due to the large number of possible combinations. It is therefore

needed to eliminate some of the input that does not contribute to the best solution. This way we reduce

the search space of the problem.

4.1.3 Alternative Codifications

There are some techniques to try to improve the efficiency of an ASP program. These techniques can be,

for example, imposing an order in the attribution of variables or eliminating symmetries. Some of these

techniques are described by Mancini et al. in [34].

We already eliminated symmetries by do not having duplicated information about interactions between

two rotamers at different positions. However we can apply some techniques to try to improve the efficiency

of our codifications.

We tried to impose some order in the attribution of the rotamers at each position. The idea is to

design the protein from the lowest position identifier to the highest. Therefore, a rotamer for the first

position must be defined before assigning a rotamer to the second position. This can be made by adding

two simple rules to the program and eliminating the generation rule of rotamers (4.1.1.8).

1{rotamer(1,Id,Amin) : possibleRotamer(1,Id,Amin, )}1 :- position(1). (4.1.3.1)

1{rotamer(Pos,Id,Amin) : possibleRotamer(Pos,Id,Amin, )}1 :- rotamer(Pos - 1, , ).

(4.1.3.2)

The first rule (4.1.3.1) means that the first position (position 1 of the protein) must have exactly one

rotamer. That rotamer must be a possible rotamer for that position. The second rule (4.1.3.2) means

that if there is one rotamer at a specific position (Pos - 1) then exactly one rotamer that is a possible

rotamer for the next position (Pos) must exist.

The solver, with these rules, will assign first the rotamer of the first position, then the rotamer of

the second position and so on until all the protein positions have a rotamer assigned. The rule (4.1.1.8)

described in section 4.1.1 which says that each position must have exactly one rotamer is no longer useful.

As the positions of the protein to be designed may not be consecutive, the above rules have to be

modified to consider that fact. A new predicate can be used to create an index of position so that it can
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be possible to identify the positions by consecutive numbers starting with ’1’.

index(Index,Pos). (4.1.3.3)

The index predicate (4.1.3.3) represents an index for the positions of a protein where the Index argument

refers to the index value and the Pos predicate refers to the position of the protein.

The rules (4.1.3.1) and (4.1.3.2) must be adapted to consider the design of non-consecutive positions

using the index predicate.

1{rotamer(Pos,Id,Amin) : possibleRotamer(Pos,Id,Amin, )}1 :- index(1,Pos). (4.1.3.4)

1{rotamer(Pos2,Id,Amin) : possibleRotamer(Pos2,Id,Amin, )}1 :- rotamer(Pos, , ),

index(Index - 1,Pos), index(Index,Pos2).

(4.1.3.5)

The rules (4.1.3.4) and (4.1.3.5) represent the same as the rules (4.1.3.1) and (4.1.3.2), respectively, but

considering the index predicate (4.1.3.3).

Another technique that can be used is to design the protein in a hierarchically way. This means that

first a residue must be assigned to a position before assigning a rotamer. Therefore the protein is designed

hierarchically where it is designed from the most generic to the most specific, i.e., first it is assigned an

amino acid to the positions, and then it is assigned the specific rotamer for each position within the

amino acid chosen. Notice that this is only applicable to the second approach of the problem, where not

only the rotamers but also the amino acids are designed as well. In the first approach the residues in

each position are given as input and this technique does not apply.

To assign first the residue and then the rotamer the rule (4.1.1.8), described previously, was changed

for the rule (4.1.3.6).

1{rotamer(Pos,Id,Amin) : possibleRotamer(Pos,Id,Amin, )}1 :- position(Pos),

residue(Amin,Pos).
(4.1.3.6)

With this rule the rotamers at each position can only be assigned if the residue is already assigned. The

consistency rule (4.1.1.12), which prevents a rotamer from belonging to a different amino acid that the

respective residue, is no longer needed.

Unfortunately these techniques did not bring any improvement. With some tests we noticed that

using these rules is more or less the same that do not using them. Our main problem lies on the large

amount of input information and the great search space of the problem.
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4.2 Dead End Elimination

As it was said before, the main problem at this point is the large amount of data and therefore the

enormous search space of the protein design problem. It is necessary to eliminate some of the starting

input to reduce the search space without losing the optimal solution. For this purpose were implemented

dead-end elimination (DEE) algorithms.

The idea of dead-end elimination is to eliminate some rotamers that cannot be in the optimal solution

[37, 18, 16]. There are several algorithms of dead-end elimination with different power of elimination.

Three of those algorithms were implemented.

In this section will be described the algorithms implemented, the main idea of those algorithms and

how they were implemented. First it will be described the answer set programming implementation and

then the Java implementation.

4.2.1 Dead-End Elimination with ASP

The first approach made to the dead-end elimination algorithms used answer set programming.

The original DEE algorithm described in [37] is one of the most simple algorithms and it was imple-

mented using answer set programming. The idea of this algorithm is to compare two rotamers at the

same positions and eliminate one of them if possible. To do this, it is computed the worst case scenario

for one rotamer and the best case scenario for the other rotamer and if the worst case of one rotamer is

better than the best case of the other rotamer, the second rotamer can be eliminated. The worst case

scenario of a rotamer is the sum of the highest energy interaction for each position different from the

position of the rotamer. Analogously the best case scenario is the sum of the lowest energy interaction

for each position. In other words, the worst case scenario for a specific rotamer is the sum of the energy

scores interactions between the rotamer and each other rotamer at a different position. This scenario

assumes that in each other position is the rotamer with the highest interaction energy with the first

rotamer.

This dead-end elimination criterion can be described as follows. The rotamer ir at position i can be

eliminated if there is a rotamer it at the same position that satisfies:

E(ir) +
∑
j,j 6=i

min
u
E(ir, ju) > E(it) +

∑
j,j 6=i

max
u

E(it, ju) (4.2.1.1)

where E(ir) is the energy score of the interaction between the rotamer ir and the backbone of the protein

and E(ir, ju) is the energy interaction between rotamer ir and rotamer ju.

Now it will be described each rule used to implement the dead-end elimination criterion and each

predicate used. The input information considered is the same as described in 4.1.1.

First, it is defined the best case scenario. The idea is to use a predicate that indicates which is the

best case for a specific rotamer and a position different from the rotamers position. This is made with
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two rules, (4.2.1.2) and (4.2.1.3).

bestCase(Pos,Id,E,Pos2) :- E = #min[interEnergy(Pos,Id,Pos2, ,V)=V],

Pos2>Pos, possibleRotamer(Pos,Id, , ), position(Pos2),

interEnergy(Pos,Id,Pos2, , ).

(4.2.1.2)

bestCase(Pos,Id,E,Pos2) :- E = #min[interEnergy(Pos2, ,Pos,Id,V)=V],

Pos2<Pos, possibleRotamer(Pos,Id, , ), position(Pos2),

interEnergy(Pos2, ,Pos,Id, ).

(4.2.1.3)

The bestCase(Pos,Id,E,Pos2) predicate in the above rules represents that the rotamer Id at position

Pos has an energy score interaction E with a rotamer at position Pos2 in the best case. The two rules

above are very similar to each other. The first one (4.2.1.2) considers the positions (Pos2) greater

than the position (Pos) of the rotamer. The second rule (4.2.1.3) considers the positions (Pos2) lesser

than the position (Pos) of the rotamer. This is needed because there are no duplicated information

about interactions between two rotamers, as mentioned in section 4.1.1. The #min function in the rules

computes the minimum interaction energy (V) of the rotamer Id and a rotamer in position Pos2.

For the worst case scenario are used very similar rules except that it is desired the maximum interaction

energies. The rules used are (4.2.1.4) and (4.2.1.5).

worstCase(Pos,Id,E,Pos2) :- E = #max[interEnergy(Pos,Id,Pos2, ,V)=V],

Pos2>Pos, possibleRotamer(Pos,Id, , ), position(Pos2),

interEnergy(Pos,Id,Pos2, , ).

(4.2.1.4)

worstCase(Pos,Id,E,Pos2) :- E = #max[interEnergy(Pos2, ,Pos,Id,V)=V],

Pos2<Pos, possibleRotamer(Pos,Id, , ), position(Pos2),

interEnergy(Pos2, ,Pos,Id, ).

(4.2.1.5)

Now it is necessary to sum all the best and worst case scenario energy scores. For that are used the

rules (4.2.1.6) and (4.2.1.7) to sum the best cases and the worst cases, respectively.

bestSum(Pos,Id,Sum+E) :- Sum = #sum[bestCase(Pos,Id,V, )=V],

possibleRotamer(Pos,Id, ,E).
(4.2.1.6)

worstSum(Pos,Id,Sum+E) :- Sum = #sum[worstCase(Pos,Id,V, )=V],

possibleRotamer(Pos,Id, ,E).
(4.2.1.7)

The two rules above sum all of the best cases and the worst cases, respectively, and the energy interaction

score of the considered rotamer with the backbone of the protein. The bestSum(Pos,Id,Sum+E) predicate

means that a rotamer Id at a position Pos has a total best case of Sum+E where Sum is the sum of all best
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cases for that rotamer and E is the energy score of the interaction between the rotamer and the backbone

of the protein. The worstSum predicate is analogous.

Now that all the best and worst cases for each rotamer are defined, it is necessary to define the

impossible rotamers. A rotamer is impossible if there is another rotamer at the same position with a

worst case worse than the best case of the first rotamer.

impossibleRotamer(Pos,Id) :- possibleRotamer(Pos,Id, , ),

possibleRotamer(Pos,Id2, , ), Id!=Id2, bestSum(Pos,Id,Sum),

worstSum(Pos,Id2,Sum2), Sum>Sum2.

(4.2.1.8)

The rule (4.2.1.8) defines that a rotamer is impossible (represented by the impossibleRotamer predicate)

if it is a rotamer with a total energy of Sum in the best case and there is another rotamer at the same

position Pos with a total energy of Sum2 in the worst case and Sum is greater than Sum2.

The complete program can be seen in appendix C.

Although this codification works, it has the same problem as the other ASP codification for the

protein design problem considered. The large amount of input data makes this program inefficient when

compared to implementations made in different programming languages.

4.2.2 Dead-End Elimination with Java

To improve the efficiency of the dead-end elimination algorithms, we implemented three algorithms in

Java. In this section will be described each algorithm implemented and a pseudo-code for each one will

be presented.

Original DEE

The algorithm described in section 4.2.1 called original dead-end elimination was the first algorithm that

we implemented in Java.

As it was said before, the idea of this algorithm is to compare two rotamers of the same position and

eliminate, if possible, one of them. For each rotamer is computed the worst case scenario and the best

case scenario (also explained in section 4.2.1). If the best case scenario of one rotamer has a total energy

score greater than the total energy of the worst case of the other rotamer, then the first rotamer can be

eliminated because the second one will always be better.

The pseudo-code for the original dead-end elimination algorithm is shown in algorithm 1.

Simple Goldstein DEE

A dead-end elimination algorithm that is more powerful than the previous one is called Simple Goldstein

DEE [37, 18]. This algorithm generally eliminates more rotamers than the original dead-end elimination

algorithm.
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Algorithm 1: Original DEE

1 foreach position i do
2 foreach rotamer r at i do
3 foreach rotamer t at i, t 6= r do
4 X = E (ir) // store energy of rotamer r
5 Y = E (it) // store energy of rotamer t
6 forall the other positions j, j 6= i do
7 forall the rotamers u at position j do
8 Z = minu [E (irju)] // best case for rotamer r
9 W = maxu [E (itju)] // worst case for rotamer t

10 end
11 X = X + Z // sum the best cases for rotamer r
12 Y = Y +W // sum the worst cases for rotamer t

13 end
14 if X > Y then
15 eliminate ir and break
16 end

17 end

18 end

19 end

The idea of Simple Goldstein DEE is to compare two rotamers at the same position and eliminate

one of them if the contribution to the total energy is always reduced by using the other rotamer. In other

words, if the minimum difference of replacing one rotamer for an alternative rotamer is positive, then

the first rotamer can be eliminated. The minimum difference being positive means that if the second

rotamer replaces the first one than the total energy of the final protein is at least reduced by the value of

the minimum difference. Therefore a rotamer is eliminated if there is another rotamer that can replace

the first one and reduce the total energy of the protein.

Formally, this criterion states that a rotamer ir can be eliminated if exists a rotamer it at the same

position that satisfies:

E (ir)− E (it) +
∑
j,j 6=i

{min
u

[E (ir, ju)− E (it, ju)]} > 0 (4.2.2.1)

The pseudo-code in algorithm 2 [37] represents the simple Goldstein dead-end elimination algorithm

that was implemented.

Simple Split DEE

Other dead-end elimination, more powerful than the original and the simple Goldstein algorithms, is the

simple split dead-end elimination algorithm [37, 18].

The idea of this algorithm may not as easy to understand as the algorithms described before. The

idea is that it is possible that a single rotamer may not be enough to eliminate other rotamer using the

simple Goldstein algorithm. The simple split DEE uses partitions so that more than one rotamer can

eliminate another rotamer. This is an alteration of the simple Goldstein algorithm and therefore the idea
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Algorithm 2: Simple Goldstein

1 foreach position i do
2 foreach rotamer r at i do
3 foreach candidate rotamer t at i do
4 X = E (ir)− E (it) // store energy difference

5 forall the other positions j, j 6= i do
6 forall the rotamers u at position j do
7 Y = minu [E (irju)− E (itju)] // minimum energy difference

8 end
9 X = X + Y // sum of minimum differences

10 end
11 if X > 0 then
12 eliminate ir and break
13 end

14 end

15 end

16 end

of minimum difference of replacing rotamers described in the simple Goldstein algorithm is present too.

The simple split algorithm consists in considering a rotamer at some position and consider a splitting

position, different from the position of the rotamer considered. Then, for each rotamer of the splitting

position, if there is another rotamer of the same position as the original rotamer with a positive minimum

difference contribution, assuming that the rotamer of the splitting position belongs to the protein, the

rotamer of the splitting position is marked. If all the rotamers of the splitting position are marked then

the original rotamer can be eliminated. In other words if, for whatever rotamer in a specific position

(splitting position), there is a rotamer in other position that can be replace by another rotamer (the total

minimum difference of the replacement is positive) then the rotamer can be eliminated. Notice that it

may not be the same rotamer that can replace the other one for all the rotamers at the splitting position.

This algorithm can be split in two parts: a first part where all the minimum difference contributions

are stored for each pair of rotamers at the same position; and a second part where it is considered a

splitting position and for each rotamer at the splitting position it is checked if exists some rotamer that

can replace other rotamer.

The algorithm 3 [37] is the pseudo-code of the simple split dead-end elimination algorithm imple-

mented.

The original DEE algorithm, the simple Goldstein DEE algorithm and the simple split DEE algorithm

were the three algorithms implemented in Java. These algorithms were applied to the possible rotamers

considered at each position in order to eliminate rotamers that cannot belong to the optimal solution so

that the search space of the protein design problem is reduced.
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Algorithm 3: Simple Split

1 foreach position i do
2 foreach rotamer r at i do
3 foreach candidate rotamer t at i do
4 forall the other positions j, j 6= i do
5 forall the rotamers u at position j do
6 store Yjt = minu [E (irju)− E (itju)] // store minimum differences

7 end

8 end

9 end
10 foreach splitting position k // split position k
11 do
12 set elimv = false ∀ v at k // initialization

13 foreach competitor t at i do
14 X = E (ir)− E (it) // store difference

15 forall the other positions j, j 6= i 6= k do
16 X = X + Yjt // sum minimum differences

17 end
18 foreach partition v at k // rotamer v at split position k
19 do
20 if (X + [E (irkv)− E (itkv)]) > 0 then
21 elimv = true
22 end

23 end

24 end
25 if elimv = true ∀ v at k then
26 eliminate ir and break
27 end

28 end

29 end

30 end
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5Results
To test the dead-end elimination algorithms and the codifications of the problem implemented we used

10 proteins, described with detail in next section (section 5.1). We tested the dead-end algorithms

implemented using ASP and Java with the 10 proteins. We also tested the two codifications described

in section 4.1 using the 10 proteins. First we tested without using any dead-end elimination algorithm.

Afterwards, we tested the codifications using the 10 proteins in which we applied the simple split DEE

algorithm (see section 16).

The tests were made using gringo version 3.0.4 as the ASP grounder and clasp version 2.1.0 as the

ASP solver. Clasp was used with the default configuration. The tests were made on Intel Xeon 5160

machines (dual-cores with 3.00 GHz of clock speed, 4 MB of cache, 1333 MHz of FSB speed, and 4 GB

of RAM each), running 64-bit versions of Linux 2.6.33.3-85.fc13. It was given a CPU time limit of 10800

seconds (3 hours) and a memory limit of 3000 Megabytes.

In this chapter will be described the results of the dead-end elimination algorithms and the results of

the codifications of the problem implemented. It will start with a description of the instances used for

the tests. Then the dead-end elimination results will be presented. Moreover, we will describe the results

of the simple codification and the double optimization implementations.

5.1 Instances

As initials tests showed that ASP has difficulties with large amount of input data, we tried to constraint

the instances used. For this purpose we only used proteins of the PDZ domain. PDZ domains are modules

of interaction between proteins [4, 26, 43, 20].

The tests run used 10 proteins. The PDB id1 of the proteins are: 1MFG, 1BE9, 2GZV, 2EGN, 2FNE,

1RZX, 1N7F, 1QAU, 1TP3 and 1I92.

To restrict the input information data in order to understand the capacities of the codifications made,

only a subset of positions were designed for each protein. We choose to design, for each protein, 17, 15,

12 and 10 positions. The positions chosen are positions with a low solvent accessibility, i.e., positions

near the core of the protein where most of the amino acids are hydrophobic, as mentioned in section

2.2.1. This way we can restrict the set of amino acids and consider only the hydrophobic amino acids.

We consider that the hydrophobic amino acids are: A, C, F, I, L, M, V, W and Y (see table 2.1)[36].

1http://www.pdb.org
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Protein Positions

1MFG 7, 9, 15, 17, 19, 37, 39, 42, 48, 52, 58, 66, 74, 78, 85, 87, 89
1BE9 18, 20, 27, 29, 31, 40, 42, 45, 51, 57, 63, 71, 79, 83, 90, 92, 94
2GZV 28, 30, 38, 40, 42, 52, 54, 57, 63, 69, 75, 83, 91, 95, 102, 104, 106
2EGN 8, 10, 18, 20, 22, 40, 41, 44, 50, 55, 61, 69, 77, 81, 88, 90, 92
2FNE 29, 31, 38, 40, 42, 55, 57, 60, 66, 72, 78, 86, 94, 98, 105, 107, 109
1RZX 6, 8, 17, 19, 21, 40, 42, 45, 51, 57, 63, 71, 79, 83, 90, 92, 94
1N7F 9, 11, 18, 20, 22, 32, 34, 37, 43, 49, 55, 63, 71, 75, 82, 84, 86
1QAU 5, 7, 15, 17, 19, 28, 30, 33, 39, 45, 51, 59, 67, 71, 80, 82, 84
1TP3 18, 20, 27, 29, 31, 40, 42, 45, 51, 57, 63, 71, 79, 83, 90, 92, 94
1I92 7, 9, 16, 18, 20, 30, 31, 34, 40, 45, 51, 59, 67, 71, 78, 80, 82

Table 5.1: List of positions designed

The 17 positions designed for each position are shown in table 5.1. The 15 positions considered for

each protein are the first 15 positions of the table 5.1, the 12 positions are the first 12 and the 10 positions

are the first 10.

For the 1MFG protein we choose the same positions as in [36]. For the other 9 proteins we used two

solvent accessibility prediction sites: SABLE2 and SAS3. We crossed the information of the two sites and,

comparing with 1MFG protein, we choose the positions with the lowest solvent accessibility prediction.

The 10 considered proteins were used considering 17, 15, 12 and 10 positions, as mentioned before.

Moreover, for the second approach, described in section 4.1, in which the amino acids of the protein are

not kept fixed, we considered two sets of amino acids. One set of amino acids considered contains all the

20 essential amino acids described in table 2.1. The other set of amino acids considered contains only

the 9 hydrophobic amino acids mentioned before (A, C, F, I, L, M, V, W and Y). Therefore, to test the

codifications and the DEE algorithms implemented, we considered the four set of positions. Moreover,

for each set of positions we considered three set of amino acids: assuming that the amino acids are fixed

(first approach described in section 4.1); the set of hydrophobic amino acids; and all the 20 essential

amino acids (second approach).

For each protein, the PDB files were extracted from the Protein Data Bank. We used an adapted

source code of Rosetta to compute the discrete set of possible rotamers given the PDB file of each protein

and respective positions to be designed. Rosetta was also used to compute all the necessary energy

interaction scores.

All the information data was converted to the predicates mentioned in chapter 4. The energy scores

computed by Rosetta are not integer numbers. Therefore, as clasp only accepts integer numbers, we

converted the scores to integers, considering 3 decimal places by multiplying each score by 1000. Hence,

we have more precision computing the optimal solution. Previous versions of clasp (before version 2.1.0)

have a sum limit of 999999999. Hence, we only considered 3 decimal places in the energy scores to avoid

reaching the sum limit. Although in version 2.1.0 of clasp the sum limit increased to 2147483647, we

continued considering only 3 decimal places for the same reason.

2http://sable.cchmc.org/
3http://140.113.239.214/~weilun/index.php
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5.2 Dead-End Elimination Results

The Original DEE algorithm implemented using ASP and the Original DEE, Simple Goldstein and

Simple Split algorithms implemented using Java were tested with the 10 proteins mention before. We

considered the four sets of positions and the three sets of amino acids (the 20 essential, the hydrophobic

and considering the amino acids of the proteins fixed). The Original and the Simple Goldstein algorithms

were run one single time for each instance. The Simple Split algorithm was run iteratively until no further

rotamers could be eliminated.

Table 5.2 shows the results for the Original DEE algorithm and for Simple Split algorithm considering

15 and 10 positions and considering the backbone fixed and hydrophobic amino acids. It contains the

initial number of rotamers, the number of rotamers eliminated by each algorithm and the time in seconds

for each approach. The full and more detailed results can be seen in appendix D.

In table 5.2 it is possible to see that for the Original DEE algorithm the Java approach is better than

the ASP approach. It is also possible to see that in some cases the Simple Split algorithm is faster than

the Original DEE algorithm implemented using ASP.

The Original DEE algorithm eliminates on average 11,93% of the rotamers with a standard deviation

of 11,43%. The Simple Split algorithm eliminates 62,52% of the rotamers on average with a standard

deviation of 17,77%.

5.3 Problem Codifications Results

One problem of clasp that can be verified looking at the results is the large amount of input data. In

our case, a large amount of considered rotamers, and therefore a large amount of interactions, makes the

search space too big. As this problem is an optimization problem, having a large search space leads to

not returning the optimal solution due to the memory size or the CPU time limit imposed.

In the problem codifications tests we used the rotamers and interactions of each protein with and

without using a DEE algorithm first. In other words, we tested the codifications using the possible

rotamers given by Rosetta and also tested the codifications using the result of applying the Simple Split

algorithm to the original rotamers. We choose to use the Simple Split algorithm because it is the most

powerful, i.e., it is the algorithm that eliminates the largest number of rotamers.

For the instances where all the 20 essential amino acids were considered, was not possible to compute

the optimal solution due to either the time limit of 3 hours or the memory size limit. For the instances

designing 17 positions only for the approach in which the backbone of the protein is kept fixed, i.e., the

amino acids in each position are given as input, were computed the optimal solution.

Table 5.3 shows the results for 15 and 10 positions. Only the instances considering the backbone fixed

and the hydrophobic amino acids are represented. The table contains the time of the two codifications

(simple codification - S.C. and double optimization - D.O.) without using DEE and using the Simple

Split DEE algorithm in seconds. It also contains the number of initial rotamers considered (#R.).
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Protein Pos. Amino # Initial
Original DEE Simple Split DEE

Acids Rotamers
# Elim. ASP Java # Elim. Java

Rotamers time(s) time(s) Rotamers time(s)

1MFG
15

Hydro. 410 12 7,878 1,264 321 7,633
Fixed 34 10 0,013 0,138 19 0,151

10
Hydro. 250 9 2,559 0,897 228 2,391
Fixed 24 7 0,008 0,106 14 0,125

1BE9
15

Hydro. 435 24 9,517 1,206 373 7,344
Fixed 35 8 0,015 0,130 20 0,151

10
Hydro. 258 14 2,864 0,793 244 2,374
Fixed 21 7 0,007 0,084 11 0,086

2GZV
15

Hydro. 456 21 10,417 1,236 355 10,601
Fixed 41 11 0,020 0,157 26 0,210

10
Hydro. 275 13 3,290 0,863 250 3,064
Fixed 28 8 0,009 0,119 18 0,138

2EGN
15

Hydro. 413 42 7,692 1,151 321 7,148
Fixed 35 13 0,013 0,128 20 0,149

10
Hydro. 238 41 2,152 0,792 205 2,385
Fixed 22 8 0,006 0,079 12 0,102

2FNE
15

Hydro. 438 38 9,678 1,170 321 8,945
Fixed 39 8 0,018 0,150 22 0,179

10
Hydro. 253 14 2,600 0,840 228 2,407
Fixed 24 5 0,007 0,101 12 0,118

1RZX
15

Hydro. 404 17 7,117 1,123 337 5,640
Fixed 45 12 0,025 0,234 30 0,253

10
Hydro. 253 15 2,719 0,835 223 2,366
Fixed 23 9 0,006 0,089 13 0,103

1N7F
15

Hydro. 402 27 7,329 1,192 339 6,303
Fixed 38 9 0,018 0,139 23 0,172

10
Hydro. 246 27 2,376 0,792 219 2,307
Fixed 25 9 0,005 0,100 15 0,108

1QAU
15

Hydro. 421 26 8,360 1,211 311 8,653
Fixed 37 8 0,018 0,144 19 0,184

10
Hydro. 251 26 2,582 0,773 233 2,710
Fixed 23 5 0,005 0,082 10 0,109

1TP3
15

Hydro. 447 17 10,183 1,269 346 9,451
Fixed 40 12 0,021 0,173 25 0,193

10
Hydro. 279 23 3,469 0,901 259 3,006
Fixed 27 10 0,009 0,116 17 0,133

1I92
15

Hydro. 455 31 10,831 1,192 318 10,095
Fixed 53 16 0,037 0,234 38 0,289

10
Hydro. 283 33 3,717 0,883 225 3,526
Fixed 36 11 0,016 0,130 26 0,151

Table 5.2: Dead-End Elimination Results for Original and Simple Split DEE
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Protein Pos. Amino
Without DEE With DEE

Acids
#R.

S.C. D.O.
#R.

S.C. D.O. S.C.+DEE D.O.+DEE
time time time time time time

1MFG
15

Hidro. 410 — — 89 679,26 620,26 686,89 627,89
Fixed 34 0,01 0,01 15 0,00 0,00 0,15 0,16

10
Hidro. 250 — — 22 0,00 0,00 2,39 2,39
Fixed 24 0,01 0,00 10 0,00 0,00 0,13 0,13

1BE9
15

Hidro. 435 — — 62 1,72 1,78 9,06 9,12
Fixed 35 0,01 0,01 15 0,00 0,00 0,15 0,15

10
Hidro. 258 — — 14 0,00 0,00 2,38 2,38
Fixed 21 0,00 0,00 10 0,00 0,00 0,09 0,09

2GZV
15

Hidro. 456 — — 101 — — — —
Fixed 41 0,02 0,02 15 0,00 0,00 0,21 0,21

10
Hidro. 275 — — 25 0,01 0,00 3,08 3,07
Fixed 28 0,01 0,01 10 0,00 0,00 0,14 0,14

2EGN
15

Hidro. 413 — — 92 280,75 279,18 287,90 286,33
Fixed 35 0,01 0,01 15 0,00 0,00 0,15 0,15

10
Hidro. 238 — — 33 0,02 0,02 2,40 2,40
Fixed 22 0,00 0,00 10 0,00 0,00 0,10 0,10

2FNE
15

Hidro. 438 — — 117 4976,56 4816,04 4985,50 4824,99
Fixed 39 0,02 0,02 17 0,00 0,00 0,18 0,18

10
Hidro. 253 — — 25 0,00 0,00 2,41 2,41
Fixed 24 0,01 0,00 12 0,00 0,00 0,12 0,12

1RZX
15

Hidro. 404 — — 67 36,04 42,31 41,68 47,95
Fixed 45 0,02 0,01 15 0,00 0,00 0,26 0,25

10
Hidro. 253 — — 30 0,00 0,01 2,37 2,37
Fixed 23 0,00 0,00 10 0,00 0,00 0,10 0,11

1N7F
15

Hidro. 402 — — 63 66,04 63,81 72,34 70,11
Fixed 38 0,03 0,03 15 0,00 0,00 0,17 0,18

10
Hidro. 246 — — 27 0,00 0,01 2,31 2,31
Fixed 25 0,00 0,00 10 0,00 0,00 0,11 0,11

1QAU
15

Hidro. 421 — — 110 2295,68 1943,80 2304,33 1952,45
Fixed 37 0,03 0,05 18 0,00 0,00 0,19 0,19

10
Hidro. 251 — — 18 0,00 0,00 2,71 2,71
Fixed 23 0,00 0,00 13 0,00 0,00 0,11 0,11

1TP3
15

Hidro. 447 — — 101 463,06 394,99 472,51 404,44
Fixed 40 0,01 0,01 15 0,00 0,00 0,20 0,20

10
Hidro. 279 — — 20 0,00 0,00 3,01 3,01
Fixed 27 0,00 0,00 10 0,00 0,00 0,14 0,13

1I92
15

Hidro. 455 — — 137 — — — —
Fixed 53 0,16 0,21 15 0,00 0,00 0,29 0,29

10
Hidro. 283 — — 58 0,46 0,47 3,99 3,99
Fixed 36 0,00 0,01 10 0,00 0,00 0,15 0,15

Table 5.3: Problem Codifications Results with and without DEE
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It is possible to see in table 5.3 that both codifications, the simple and the double optimization, do

not differ much. It is also possible to see that using the DEE algorithm first, as it decreases the number

of rotamers, allows to solve a larger number of instances. For the instances that are solved without DEE

we can see that using DEE does not increase significantly the total time.

More detailed and complete results can be found in appendix D.

There are 120 instances (12 for each of the 10 proteins). Of these 120 instances, 40 consider the 20

essential amino acids, other 40 consider only hydrophobic amino acids and the remaining 40 consider the

amino acids given as input. Table 5.4 shows the percentage of solved instances with and without using

the Simple Split DEE algorithm.

Amino Acids
All Hydrophobic Fixed

Without DEE 0% (0/40) 0% (0/40) 100% (40/40)
With DEE 0% (0/40) 70% (28/40) 100% (40/40)

Table 5.4: Percentage of Solved Instances

In appendix D it is possible to verify that the majority of the unsolved instances ran out of memory.

Therefore, increasing the time limit imposed would not allow us to solve all the instances.

5.4 Discussion

In the codifications made, we give as output the set of rotamers that minimizes the total energy of the

protein, i.e., the dihedral angles of the side-chain of the amino acids. Although most of the existent

tools do not guarantee the optimal solution, it is desired to compare solutions in order to evaluate the

quality of our solution. For that, it is needed a tool that converts the dihedral angles in three-dimensional

coordinates, generating a PDB file with the design protein. This way it is possible to compute the total

energy of the protein designed, by our approach and by the several existent tools, using the same tool to

calculate the energy, allowing the comparison of the solutions. This is suggested as future work.

Although we cannot directly compare the solutions, we can verify the percentage of amino acids of

the designed protein that matches the original PDB file of the protein. As we do not have the optimal

solution for all the instances that consider the 20 essential amino acids, we only made the comparison for

the instances that consider only the hydrophobic amino acids. Notice that for the instances that consider

the backbone fixed, i.e., the amino acids of each designed position is given as input, the match is always

100%. Table 5.5 shows the number of matches for the instances in which only the hydrophobic amino

acids are considered. Remember that for 17 positions the optimal solution was only computed for the

instances which considered the amino acids fixed. In table 5.5 is possible to see that there are more than

50% matches in each instance.
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Protein
# Positions
15 12 10

1MFG 12 9 8
1BE9 11 8 6
2GZV — 10 9
2EGN 11 7 6
2FNE 13 10 9
1RZX 11 8 7
1N7F 10 10 8
1QAU 14 11 9
1TP3 14 11 9
1I92 — 7 7

Table 5.5: Number of matched amino acids

We already mentioned that the large amount of data influences the time of computing the optimal

solution. In fact the number of rotamers considered as input greatly influences the total time of grounding

and solving.

Figure 5.1 shows the relation between the number of rotamers and the time of computing the optimal

solution. Figure 5.1(e) has a logarithmic time scale in order to better illustrate the results. It is possible

to verify that the time increases exponentially with the number of rotamers given as input. Also, figure

5.1 shows that above around 110 rotamers is not possible to compute the optimal solution under 3 hours

(the limit imposed).

In the beginning of this section we mentioned that we do not have a tool to transform the dihedral

angles in three-dimensional coordinates in order to compare our solution with other existent tools. One

of the main differences between our approach and the majority of the existent tools is that we guarantee

the optimal solution for the given input information. Therefore, comparing our solution with the other

tools may lead to wrong conclusions. It is necessary to consider that the other tools may not return the

optimal solution. However, it would be interesting to verify how much better our solution is and try to

understand if the quality of the solution justifies a possible difference of solving time.

Despite of the fact that we cannot directly compare solutions, we can compare some results with

ProtSAT[36], once that ProtSAT returns an optimal solution. We did not have access to ProtSAT,

therefore we can only look to the results described in [36]. It is possible to see that ProtSAT can design

17 positions unlike our approach which could not design 17 positions except when considering that the

amino acids of each position are given as input.
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6Conclusion
The main goal of this work is to verify the capacity of answer set programming when applied to the

protein design problem. Answer set programming is commonly used in difficult search problems and can

be used in optimization problems as well[35, 30, 10]. The protein design problem is a search problem

with an optimization criterion: minimize the total energy of a protein. Therefore, our goal is to verify if

ASP could be applied to solve efficiently the protein design problem.

Our work has two main differences from the existent tools. First, our approach guarantees the optimal

solution for the given input information. Most of the existent tools do not guarantee the optimality of

the solution. Second, our approach uses ASP, a language never used before to solve the protein design

problem.

Two codifications were made for the protein design problem, described in chapter 4. The two ap-

proaches, as mentioned in chapter 5, do not differ much regarding the number of solutions and the solving

time. We also implemented dead-end elimination methods[18, 16] using ASP and Java. A dead-end elim-

ination method is a search problem. The goal of DEE is to find rotamers that cannot belong to the

optimal solution of the protein design problem. Using two different languages allowed us to compare the

efficiency of ASP in this search problem.

With this work we can conclude that ASP is not very good when there is a large amount of input

information. Results showed that for more than around 110 rotamers no solution is given to the protein

design problem (see figure 5.1). In figure 5.1(e) it is possible to verify that the solving time of ASP

increases exponentially with the increasing of the number of rotamers.

Moreover, it is possible to see that the implementation of the Original DEE algorithm in ASP for a

larger number of rotamers is worse than the implementation in Java of the same algorithm. In some cases,

the Simple Split algorithm, which is more powerful than the Original DEE algorithm, if implemented in

Java is faster than the Original DEE algorithm implemented in ASP.

However, it is also possible to conclude that, for a small number of rotamers, ASP is very fast. In the

codifications of the protein design problem, results showed that for less 50 rotamers, it takes less than

one second to compute the optimal solution. Regarding the Original DEE algorithm implemented, it is

possible to see that for a small number of rotamers ASP is faster than Java.

ASP can be very good with search and optimization problems with a small amount of input infor-

mation. When applied to the protein design problem, as it has a large amount of information regarding

interactions between rotamers, ASP may not be the best approach.
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6.1 Future Work

As future work, we suggest the development of a tool to convert the dihedral angles in three-dimensional

coordinates, as mentioned in section 5.4. This tool would allow to transform the output of our approach in

a PDB file. This PDB file would contain the three-dimensional coordinates of all the atoms of the protein

designed. Therefore, it would be possible to compare our solution with the solutions of the existent

protein design tools. Although most of the other approaches do not guarantee the optimal solution,

it is important to compare the total energy of the protein designed by the different approaches. This

can be made correctly using the PDB file of the designed protein to compute the total energy of the

protein. Comparing the solutions, even considering that our approach guarantees the optimal solution,

may lead to important conclusions. If our solution is better than the other solutions, i.e., the total energy

of our solution is lower that the others, than it is interesting to verify if a possible difference of solving

time justifies the quality of our solution. If, for some reason, the other solutions are better than ours,

it is important to understand the reason. It can be because we may not be considering some kind of

information. Therefore, we could improve our approach by considering a possible missing information.

In this work it is not considered any collision detection method between rotamers. The set of possible

rotamers considered for each protein can have rotamers that collide with each other when present on

the protein structure. It is not desired to design proteins with rotamers that collide because it is not a

possible protein. The energy values for interaction between two rotamers have collisions in account, i.e.,

the interaction energy of two rotamers that collide with each other is very high compared to the other

interaction values. Although it is probable that Dead-End Elimination methods eliminate rotamers that

collide, it is possible that such rotamers are considered in the final solution (if they are not eliminated by

the DEE algorithm). As future work we suggest the use of a tool that identifies pairs of rotamers that

collide. This way we can add more restrictions to the ASP program and possibly increase the efficiency

of the program.

As ASP revealed to be fast for small number of rotamers considered, therefore the use of different

tools to eliminate rotamers or add restrictions to the ASP program can improve the efficiency of the

program. The development of hybrid programs that use tools such as Dead-End Elimination methods

and collision detection methods in order to eliminate rotamers and add restrictions and then use ASP to

find the optimal solution may lead to better results.

Clasp, the ASP solver used in this work, has some internal options that can be modified. In this

work we used the default configuration. However, as future work, we suggest to study the impact of

each option in this particular approach. It is possible to change the restart policy. The heuristic used

by clasp during the search of the solution, as well as using SAT preprocessing or transform the choice

rules into normal rules can be modified as well. Although we planned to change and test different options

configurations, due to the lack of time, this was not made. Therefore, as future work it is important to

test different configurations to verify if our approach can be more efficient.
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AKakuro using ASP

Good examples to be used with ASP are games. There are many games that can be viewed as Constraint

Satisfaction Problems (CSP) and can be encoded in ASP. Next it will be presented a codification for

Kakuro, a well known game.

Kakuro is a game considered to be the mathematical version of crosswords. Kakuro consists in a grid

with white cells, black cells and hints. The hints can be in a right diagonal of a cell or in a left diagonal

of a cell. A hint in a left diagonal means that the sum of the consecutive white cells vertically above

the hint must sum the number given in the hint. A hint in a right diagonal means that the sum of the

horizontally consecutive white cells must be the number given in the hint. The objective of the game is

to put a number in each white cells so that the hints can be verified. This game has only three simple

rules:

1. Each white cell must have exactly one integer number between 1 and 9.

2. All numbers in a consecutive group of white cells (vertically or horizontally) must be different.

3. The sum of consecutive white cells must be equal to the respective hint.

Figure A.1 illustrates an instance of a kakuro game and the respective solution.

Figure A.1: Kakuro instance and solution

A simple ASP program to solve kakuro is described next. To solve kakuro using ASP, first we define

the facts that will be used. The facts represent the specific information about a kakuro instance. Several

predicates are defined to represent the information of a kakuro grid. To represent each cell of the grid

we use the predicate cell(X,Y) where X,Y are coordinates representing the line of the grid (X) and the

column of the grid (Y). To define a group of consecutive white cells (horizontally or vertically) we define

the predicate group(Id,X,Y) meaning that the cell with coordinates (X,Y) belongs to group Id. The

black cells of the grid are represented by the predicate black(X,Y), where X,Y are the coordinates of
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the black cell. Finally, to represent all the information of an instance of a kakuro game, we define the

predicates leftDiag(Sum,X,Y) and rightDiag(Sum,X,Y) meaning that a cell with coordinates X,Y is a

hint on a left diagonal or right diagonal, respectively, with the value Sum.

To solve kakuro we also define two auxiliary predicates that indicates the possible values of the white

cells and how much can a group of consecutive white cells sum. The predicates used are val(1..9)

indicating that possible values of a cell are between 1 and 9, and sum(1..45) indicating that a sum of

consecutive white cells can be between 1 and 45.

Once the facts are represented, we define rules to represent the constraints of the game. To represent

that each white cell must have exactly one number we define the following rule:

1{num(N,X,Y):val(N)}1 :- cell(X,Y),not diag(X,Y),not black(X,Y).

In this rule we define the predicate num(N,X,X) meaning that the cell of coordinates X,Y has the number

N. The rule indicates that each cell that is not a diagonal and is not black, hence is white, must have at

least one number and at most one number, i.e. exactly one number, and the number must be a possible

value.

The predicate diag(X,Y) meaning that the cell (X,Y) has a diagonal is defined by the two following

rules:

diag(X,Y) :- leftDiag(Sum,X,Y),sum(Sum),cell(X,Y).

diag(X,Y) :- rightDiag(Sum,X,Y),sum(Sum),cell(X,Y).

These rules represent that if a cell has a left diagonal then has a diagonal and the same holds for the

right diagonal.

To add some consistency to the program we also define that diagonals and black cell cannot have any

number. This is guaranteed by the following rules:

:- num(Val,X,Y),val(Val),cell(X,Y),black(X,Y).

:- num(Val,X,Y),val(Val),cell(X,Y),diag(X,Y).

To define the second rule of kakuro that says that the numbers in a consecutive group of white cells

must be all different we define rules that represent that two different cells of the same group of consecutive

white cells must not have the same number. This is encoded with the rules:

:- num(Val,X1,Y1),num(Val,X2,Y2),val(Val),X2!=X1,Y1=Y2,

group(Id1,X1,Y1),group(Id2,X2,Y2),Id1=Id2.

:- num(Val,X1,Y1),num(Val,X2,Y2),val(Val),X2=X1,Y1!=Y2

group(Id1,X1,Y1),group(Id2,X2,Y2),Id1=Id2.

The third rule of kakuro says that a consecutive group of white cells (horizontally or vertically) must

sum the value of the respective hint. To encode this rule we define the predicates hSum and vSum that
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represents the horizontal and vertical sum, respectively. The sum of a consecutive white cell is made

recursively. For a horizontal sum we sum the cells from the right to the left so that the cell next to the

respective hint, which will be on the left of the group, has the sum of all the consecutive white cells. For

the vertical sum, it is analogous, hence the sum is made from the bottom to top.

To sum a horizontal group of consecutive cells we say that the sum at each cell is the sum of the

number in that cell with all numbers at the right of that cell. If the cell is the last of the consecutive

white cells we say that its sum is equal to the number in it. Notice that for a cell to be the last in a

horizontal group, the cell on its right must be a diagonal or a black cell or not to exist. The following

rules are then defined to the horizontal sum:

HSum(Val,X,Y) :- cell(X,Y),num(Val,X,Y),val(Val),not cell(X,Y+1).

HSum(Val,X,Y) :- cell(X,Y),num(Val,X,Y),val(Val),black(X,Y+1).

HSum(Val,X,Y) :- cell(X,Y),num(Val,X,Y),val(Val),diag(X,Y+1).

HSum(Sum+Val,X,Y) :- hSum(Sum,X,Y+1),sum(Sum),cell(X,Y),

num(Val,X,Y),val(Val).

The vSum predicate is defined analogously.

To satisfy the third rule of kakuro it is needed to define that the sum in the first cell of a group of

consecutive white cells must be equal to the respective hint, i.e, their values cannot be different. This is

achieved with the rules:

:- hSum(Sum1,X,Y+1),sum(Sum1),cell(X,Y),rightDiag(Sum2,X,Y),

Sum1!=Sum2.

:- vSum(Sum1,X+1,Y),sum(Sum1),cell(X,Y),leftDiag(Sum2,X,Y),

Sum1!=Sum2.

With these rules any instance of a kakuro game can be solved.

Many different approaches can be made to solve this problem using answer set programming. The

approach presented here is a simple one where we define the rules of the game and let the ASP solver find

the solution. A different approach is made in [42]. The approach is more similar to the approach taken

by humans to solve the game by hand. In [42] predicates are defined to represent the possible number for

each cell and then impossible combinations are eliminated. If a cell has only one possible number then

that number must be in that cell.

Different approaches to solve the same problem, not only kakuro, can be equally efficient or it is

possible for one approach to be more efficient in solving smaller instances and the other more efficient in

the larger instances.
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BASP Codi�cations for Protein Design

In this section will be shown the complete code for the Simple Codification and for the Double Opti-

mization. For a better understanding it will be given an example of input and respective output for each

codification.

B.1 Simple codification

B.1.1 Code

%Each p o s i t i o n has e x a c t l y one amino ac id

1{ r e s i d u e (Amin , Pos ) : aminoAcid (Amin)}1 :− p o s i t i o n ( Pos ) .

%Each p o s i t i o n has e x a c t l y one rotamer

1{ rotamer ( Pos , Id , Amin ) : poss ib leRotamer ( Pos , Id , Amin , )}1 :− p o s i t i o n ( Pos ) .

%There cannot e x i s t a rotamer t h a t do not match the amino ac id

:− p o s i t i o n ( Pos ) , rotamer ( Pos , Id , Amin1 ) , r e s i d u e (Amin2 , Pos ) ,

Amin1 != Amin2 .

%Each rotamer c o n t r i b u t e s wi th an energy i n t e r a c t i o n wi th the backbone

energy ( Pos , Id , Pos , Id , Energy ) :− rotamer ( Pos , Id , Amin) ,

poss ib leRotamer ( Pos , Id , Amin , Energy ) .

%Each p a i r o f rotamers c o n t r i b u t e s wi th an energy i n t e r a c t i o n between them

energy ( Pos1 , Id1 , Pos2 , Id2 , Energy ) :− interEnergy ( Pos1 , Id1 , Pos2 , Id2 , Energy ) ,

rotamer ( Pos1 , Id1 , ) , rotamer ( Pos2 , Id2 , ) .

%Minimize the energy

#minimize [ energy ( , , , , Energy ) = Energy ] .
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%Only show the rotamers

#hide .

#show rotamer ( , , ) .

B.1.2 Example

This section illustrates a little example of input and output. The example do not correspond to a real

case, it is just to show the codification of the input data and the output produced.

Input

aminoAcid(ala).

aminoAcid(val).

position(1).

position(2).

possibleRotamer(1,1,ala,3).

possibleRotamer(1,2,ala,-9).

possibleRotamer(2,1,val,5).

possibleRotamer(2,2,ala,-7).

interEnergy(1,1,2,1,6).

interEnergy(1,1,2,2,0).

interEnergy(1,2,2,1,1).

interEnergy(1,2,2,2,16).

Output

clasp\ version 2.1.0

Reading from stdin

Solving...

Answer: 1

rotamer(2,2,ala) rotamer(1,2,ala)

Optimization: 16

Answer: 2

rotamer(2,1,val) rotamer(1,2,ala)

Optimization: 13

Answer: 3
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rotamer(2,2,ala) rotamer(1,1,ala)

Optimization: 12

OPTIMUM FOUND

Models : 1

Enumerated: 3

Optimum : yes

Optimization: 12

Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

The optimization value of the optimal solution in this case is 12 because the conversions of the

negative values were made. In fact, the value comes from the sum of the positive energies 3 and 0, from

rotamer(1,1,ala) and from the interaction between the two rotamers of the solution respectively. The

energy of rotamer(2,2,ala), as it is a negative value, after the transformation, has the absolute value

of the negative interactions that do not belong to the solution. In this case as value 9. Therefore, the

optimization value for the solution is 12 (3+0+9).

B.2 Double Optimization Codification

B.2.1 Code

%Each p o s i t i o n has e x a c t l y one amino ac id

1{ r e s i d u e (Amin , Pos ) : aminoAcid (Amin)}1 :− p o s i t i o n ( Pos ) .

%Cada pos icao tem um e um so rotamer

1{ rotamer ( Pos , Id , Amin) : possiblePRotamer ( Pos , Id , Amin , ) ,

rotamer ( Pos , Id , Amin) : possibleNRotamer ( Pos , Id , Amin , )}1

:− p o s i t i o n ( Pos ) .

%Each p o s i t i o n has e x a c t l y one rotamer

:− p o s i t i o n ( Pos ) , rotamer ( Pos , Id , Amin1 ) , r e s i d u e (Amin2 , Pos ) ,

Amin1 != Amin2 .

%Each rotamer c o n t r i b u t e s wi th an energy i n t e r a c t i o n wi th the backbone
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%p o s i t i v e

pEnergy ( Pos , Id , Pos , Id , Energy ) :− rotamer ( Pos , Id , Amin) ,

possiblePRotamer ( Pos , Id , Amin , Energy ) .

%n e g a t i v e

nEnergy ( Pos , Id , Pos , Id , Energy ) :− rotamer ( Pos , Id , Amin) ,

possibleNRotamer ( Pos , Id , Amin , Energy ) .

%Each p a i r o f rotamers c o n t r i b u t e s wi th an energy i n t e r a c t i o n between them

%p o s i t i v e

pEnergy ( Pos1 , Id1 , Pos2 , Id2 , Energy ) :− interPEnergy ( Pos1 , Id1 , Pos2 , Id2 , Energy ) ,

rotamer ( Pos1 , Id1 , ) , rotamer ( Pos2 , Id2 , ) .

%n e g a t i v e

nEnergy ( Pos1 , Id1 , Pos2 , Id2 , Energy ) :− interNEnergy ( Pos1 , Id1 , Pos2 , Id2 , Energy ) ,

rotamer ( Pos1 , Id1 , ) , rotamer ( Pos2 , Id2 , ) .

%Minimize the p o s i t i v e energy

#minimize [ pEnergy ( , , , , Energy ) = Energy @1 ] .

%Maximize the n e g a t i v e energy

#maximize [ nEnergy ( , , , , Energy ) = Energy @1 ] .

%Only show the rotamers

#hide .

#show rotamer ( , , ) .

B.2.2 Example

Now will be showed a the same example showed in previous section but adapted for the double optimiza-

tion codification.

Input

aminoAcid(ala).

aminoAcid(val).

position(1).

position(2).

possiblePRotamer(1,1,ala,3).
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possibleNRotamer(1,2,ala,9).

possiblePRotamer(2,1,val,5).

possibleNRotamer(2,2,ala,7).

interPEnergy(1,1,2,1,6).

interPEnergy(1,1,2,2,0).

interPEnergy(1,2,2,1,1).

interPEnergy(1,2,2,2,16).

Output

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

rotamer(2,1,val) rotamer(1,1,ala)

Optimization: 30

Answer: 2

rotamer(2,1,val) rotamer(1,2,ala)

Optimization: 13

Answer: 3

rotamer(2,2,ala) rotamer(1,1,ala)

Optimization: 12

OPTIMUM FOUND

Models : 1

Enumerated: 3

Optimum : yes

Optimization: 12

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s
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CDead End Elimination Codi�cation

In this section is shown the complete implementation of the Original Dead-End Elimination algorithm

using ASP.

bestCase ( Pos , Id ,E, Pos2 ) :− E = #min [ interEnergy ( Pos , Id , Pos2 , ,V)=V] ,

Pos2>Pos , poss ib leRotamer ( Pos , Id , , ) , p o s i t i o n ( Pos2 ) ,

interEnergy ( Pos , Id , Pos2 , , ) .

bestCase ( Pos , Id ,E, Pos2 ) :− E = #min [ interEnergy ( Pos2 , , Pos , Id ,V)=V] ,

Pos2<Pos , poss ib leRotamer ( Pos , Id , , ) , p o s i t i o n ( Pos2 ) ,

interEnergy ( Pos2 , , Pos , Id , ) .

bestSum ( Pos , Id ,Sum+E) :− Sum = #sum [ bestCase ( Pos , Id ,V, )=V] ,

poss ib leRotamer ( Pos , Id , ,E ) .

worstCase ( Pos , Id ,E, Pos2 ) :− E = #max [ interEnergy ( Pos , Id , Pos2 , ,V)=V] ,

Pos2>Pos , poss ib leRotamer ( Pos , Id , , ) , p o s i t i o n ( Pos2 ) ,

interEnergy ( Pos , Id , Pos2 , , ) .

worstCase ( Pos , Id ,E, Pos2 ) :− E = #max [ interEnergy ( Pos2 , , Pos , Id ,V)=V] ,

Pos2<Pos , poss ib leRotamer ( Pos , Id , , ) , p o s i t i o n ( Pos2 ) ,

interEnergy ( Pos2 , , Pos , Id , ) .

worstSum ( Pos , Id ,Sum+E) :− Sum = #sum [ worstCase ( Pos , Id ,V, )=V] ,

poss ib leRotamer ( Pos , Id , ,E ) .
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imposs ibleRotamer ( Pos , Id ) :− poss ib leRotamer ( Pos , Id , , ) ,

poss ib leRotamer ( Pos , Id2 , , ) , Id !=Id2 , bestSum ( Pos , Id ,Sum) ,

worstSum ( Pos , Id2 , Sum2) , Sum>Sum2 .

#hide .

#show impossibleRotamer /2 .
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DComplete Tables of Results

In this section will be shown the complete tables of results for the dead-end elimination algorithms

implemented and for the two codifications made.

Tables D.1, D.2 and D.3 show the results for the Original DEE algorithm implemented in ASP. The

times are in seconds and the grounder size in Megabytes. It also shows the number of eliminated rotamers.

Tables D.4, D.5 and D.6 contain the results for the Original, Simple Goldstein and Simple Split

DEE algorithms implemented in Java. These tables shows the number of eliminated rotamers in each

algorithm. The times are in seconds.

The complete results for the simple codification can be seen in tables D.7, D.8 and D.9. In this tables

there were not applied any DEE algorithm to the instances. It is possible to see the number of rotamers

considered in each instance, the grounder size in Megabytes and the times of grounding, solving and

total, in seconds. The instances for which we do not computed the optimal solution in under 3 hours

are represented with ’+3h.’. The instances with ’mem.’ means that did not solve under the memory size

limit.

Tables D.10, D.11 and D.12 show the results of the simple codification in which was applied the Simple

Split DEE algorithm to each instance.

Tables D.13, D.14 and D.15, and tables D.16, D.17 and D.18, are similar to the mentioned above but

for the Double Optimization codification. The first three tables consider instances where there were not

applied DEE algorithms The last three tables show the results of the Double Optimization considering

instances where were applied the Simple Split DEE algorithm.
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Protein Pos.
Amino # Elim. Grounder Grounder Solver Total
Acids Rotamers size(MB) time(s) time(s) time(s)

1MFG

17
All 39 44,7 1668,318 2,361 1670,679
Hydro. 19 2,1 17,703 0,120 17,823
Fixed 9 0,0 0,023 0,000 0,023

15
All 40 24,9 808,308 1,341 809,649
Hydro. 12 1,1 7,816 0,062 7,878
Fixed 10 0,0 0,013 0,000 0,013

12
All 34 13,8 431,006 0,766 431,772
Hydro. 22 0,6 4,316 0,030 4,346
Fixed 8 0,0 0,010 0,000 0,010

10
All 25 8,3 249,912 0,446 250,358
Hydro. 9 0,4 2,546 0,013 2,559
Fixed 7 0,0 0,008 0,000 0,008

1BE9

17
All 38 42,5 1573,381 2,510 1575,891
Hydro. 21 1,8 15,126 0,110 15,236
Fixed 7 0,0 0,019 0,000 0,019

15
All 34 27,1 929,879 1,630 931,509
Hydro. 24 1,2 9,447 0,070 9,517
Fixed 8 0,0 0,015 0,000 0,015

12
All 53 14,3 476,855 0,880 477,735
Hydro. 29 0,7 5,136 0,030 5,166
Fixed 7 0,0 0,008 0,000 0,008

10
All 18 9,9 327,966 0,610 328,576
Hydro. 14 0,4 2,854 0,010 2,864
Fixed 7 0,0 0,007 0,000 0,007

2GZV

17
All 22 55,8 2353,776 3,330 2357,106
Hydro. 23 2,4 22,889 0,140 23,029
Fixed 15 0,0 0,037 0,000 0,037

15
All 22 31,8 1167,628 1,920 1169,548
Hydro. 21 1,3 10,347 0,070 10,417
Fixed 11 0,0 0,020 0,000 0,020

12
All 30 17,7 645,332 1,080 646,412
Hydro. 26 0,7 5,707 0,030 5,737
Fixed 8 0,0 0,013 0,000 0,013

10
All 21 10,8 373,509 0,700 374,209
Hydro. 13 0,4 3,280 0,010 3,290
Fixed 8 0,0 0,009 0,000 0,009

2EGN

17
All 30 41,0 1576,206 2,400 1578,606
Hydro. 30 1,9 16,318 0,110 16,428
Fixed 14 0,0 0,025 0,000 0,025

15
All 60 24,4 820,727 1,460 822,187
Hydro. 42 1,0 7,632 0,060 7,692
Fixed 13 0,0 0,013 0,000 0,013

12
All 103 10,9 328,585 0,670 329,255
Hydro. 28 0,5 3,443 0,010 3,453
Fixed 10 0,0 0,008 0,000 0,008

10
All 77 7,1 207,857 0,410 208,267
Hydro. 41 0,3 2,142 0,010 2,152
Fixed 8 0,0 0,006 0,000 0,006

Table D.1: DEE with ASP - 1MFG, 1BE9, 2GZV, 2EGN
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Protein Pos.
Amino # Elim. Grounder Grounder Solver Total
Acids Rotamers size(MB) time(s) time(s) time(s)

2FNE

17
All 41 49,1 1973,531 2,960 1976,491
Hydro. 46 2,2 20,110 0,120 20,230
Fixed 8 0,0 0,027 0,000 0,027

15
All 35 29,2 1051,298 1,760 1053,058
Hydro. 38 1,2 9,618 0,060 9,678
Fixed 8 0,0 0,018 0,000 0,018

12
All 72 14,1 455,842 0,850 456,692
Hydro. 33 0,6 4,356 0,020 4,376
Fixed 6 0,0 0,011 0,000 0,011

10
All 48 9,0 287,701 0,560 288,261
Hydro. 14 0,4 2,590 0,010 2,600
Fixed 5 0,0 0,007 0,000 0,007

1RZX

17
All 19 47,9 1880,231 2,820 1883,051
Hydro. 18 2,0 17,123 0,110 17,233
Fixed 8 0,0 0,036 0,000 0,036

15
All 19 27,8 980,342 1,660 982,002
Hydro. 17 1,0 7,057 0,060 7,117
Fixed 12 0,0 0,025 0,000 0,025

12
All 40 12,3 410,918 0,740 411,658
Hydro. 18 0,5 3,650 0,020 3,670
Fixed 8 0,0 0,010 0,000 0,010

10
All 15 10,0 346,099 0,600 346,699
Hydro. 15 0,4 2,709 0,010 2,719
Fixed 9 0,0 0,006 0,000 0,006

1N7F

17
All 67 41,4 1592,628 2,480 1595,108
Hydro. 23 1,9 16,492 0,110 16,602
Fixed 7 0,0 0,026 0,000 0,026

15
All 84 22,8 737,767 1,360 739,127
Hydro. 27 1,0 7,279 0,050 7,329
Fixed 9 0,0 0,018 0,000 0,018

12
All 38 13,8 463,031 0,860 463,891
Hydro. 17 0,6 4,284 0,020 4,304
Fixed 9 0,0 0,011 0,000 0,011

10
All 64 8,2 249,685 0,510 250,195
Hydro. 27 0,4 2,366 0,010 2,376
Fixed 9 0,0 0,005 0,000 0,005

1QAU

17
All 33 45,5 1766,765 2,730 1769,495
Hydro. 28 2,0 18,231 0,120 18,351
Fixed 10 0,0 0,027 0,000 0,027

15
All 34 25,4 864,903 1,610 866,513
Hydro. 26 1,1 8,300 0,060 8,360
Fixed 8 0,0 0,018 0,000 0,018

12
All 44 12,8 413,096 0,760 413,856
Hydro. 19 0,6 4,133 0,020 4,153
Fixed 5 0,0 0,010 0,000 0,010

10
All 80 8,7 278,254 0,550 278,804
Hydro. 26 0,4 2,572 0,010 2,582
Fixed 5 0,0 0,005 0,000 0,005

Table D.2: DEE with ASP - 2FNE, 1RZX, 1N7F, 1QAU
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Protein Pos.
Amino # Elim. Grounder Grounder Solver Total
Acids Rotamers size(MB) time(s) time(s) time(s)

1TP3

17
All 34 43,6 1613,248 2,550 1615,798
Hydro. 20 1,9 15,614 0,110 15,724
Fixed 9 0,0 0,028 0,000 0,028

15
All 31 29,2 1023,314 1,760 1025,074
Hydro. 17 1,3 10,123 0,060 10,183
Fixed 12 0,0 0,021 0,000 0,021

12
All 24 15,9 542,621 0,980 543,601
Hydro. 24 0,7 5,927 0,030 5,957
Fixed 10 0,0 0,012 0,000 0,012

10
All 37 10,4 353,710 0,620 354,330
Hydro. 23 0,5 3,459 0,010 3,469
Fixed 10 0,0 0,009 0,000 0,009

1I92

17
All 22 45,0 1809,885 2,700 1812,585
Hydro. 26 2,2 21,396 0,130 21,526
Fixed 16 0,0 0,045 0,000 0,045

15
All 27 26,3 933,011 1,580 934,591
Hydro. 31 1,3 10,761 0,070 10,831
Fixed 16 0,0 0,037 0,000 0,037

12
All 48 13,4 470,347 0,860 471,207
Hydro. 29 0,6 5,304 0,030 5,334
Fixed 13 0,0 0,022 0,000 0,022

10
All 18 9,7 349,429 0,630 350,059
Hydro. 33 0,5 3,707 0,010 3,717
Fixed 11 0,0 0,016 0,000 0,016

Table D.3: DEE with ASP - 1TP3, 1I92
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Protein Pos. Amino
Original DEE Simple Goldstein Simple Split

Acids
# Elim.

Time(s)
# Elim.

Time(s)
# Elim.

Time(s)
Rotamers Rotamers Rotamers

1MFG

17
All 39 26,477 431 652,490 583 4536,752
Hydro. 19 1,728 225 7,439 347 20,313
Fixed 9 0,158 18 0,177 24 0,181

15
All 40 14,030 505 287,440 787 1918,087
Hydro. 12 1,264 190 3,465 321 7,633
Fixed 10 0,138 17 0,133 19 0,151

12
All 34 7,533 521 137,887 886 632,924
Hydro. 22 1,059 154 2,143 273 3,663
Fixed 8 0,116 14 0,112 16 0,131

10
All 25 4,882 518 73,508 858 199,909
Hydro. 9 0,897 132 1,601 228 2,391
Fixed 7 0,106 12 0,110 14 0,125

1BE9

17
All 38 22,390 445 572,432 606 3885,199
Hydro. 21 1,531 249 5,769 374 14,396
Fixed 7 0,194 16 0,200 23 0,232

15
All 34 14,854 497 315,710 777 2272,126
Hydro. 24 1,206 220 3,642 373 7,344
Fixed 8 0,130 16 0,132 20 0,151

12
All 53 7,731 506 151,439 866 711,925
Hydro. 29 0,976 169 2,190 311 3,977
Fixed 7 0,118 12 0,121 15 0,129

10
All 18 5,555 539 92,421 979 286,614
Hydro. 14 0,793 151 1,374 244 2,374
Fixed 7 0,084 9 0,088 11 0,086

2GZV

17
All 22 32,517 441 1272,201 612 7740,051
Hydro. 23 1,787 215 9,877 372 31,211
Fixed 15 0,249 18 0,275 36 0,303

15
All 22 18,031 541 431,441 851 2741,559
Hydro. 21 1,236 197 4,549 355 10,601
Fixed 11 0,157 15 0,171 26 0,210

12
All 30 9,687 545 219,122 917 1152,268
Hydro. 26 1,046 175 2,563 297 5,220
Fixed 8 0,139 12 0,141 23 0,159

10
All 21 6,413 525 119,700 799 473,970
Hydro. 13 0,863 150 1,661 250 3,064
Fixed 8 0,119 10 0,123 18 0,138

2EGN

17
All 30 22,948 597 599,467 789 4538,185
Hydro. 30 1,522 246 6,729 382 16,753
Fixed 14 0,188 21 0,191 27 0,224

15
All 60 12,824 686 275,586 971 1637,053
Hydro. 42 1,151 212 3,291 321 7,148
Fixed 13 0,128 17 0,129 20 0,149

12
All 103 6,554 602 95,863 945 350,433
Hydro. 28 0,858 166 1,678 242 3,855
Fixed 10 0,112 11 0,116 14 0,132

10
All 77 4,195 565 54,748 863 170,553
Hydro. 41 0,792 140 1,248 205 2,385
Fixed 8 0,079 9 0,084 12 0,102

Table D.4: DEE with Java - 1MFG, 1BE9, 2GZV, 2EGN
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Protein Pos. Amino
Original DEE Simple Goldstein Simple Split

Acids
# Elim.

Time(s)
# Elim.

Time(s)
# Elim.

Time(s)
Rotamers Rotamers Rotamers

2FNE

17
All 41 28,208 428 801,896 586 5848,930
Hydro. 46 1,713 255 8,235 358 26,148
Fixed 8 0,216 16 0,238 26 0,271

15
All 35 15,980 496 389,451 758 2127,102
Hydro. 38 1,170 218 3,906 321 8,945
Fixed 8 0,150 14 0,154 22 0,179

12
All 72 7,866 527 149,279 859 642,600
Hydro. 33 0,921 166 1,960 269 3,835
Fixed 6 0,116 10 0,121 15 0,159

10
All 48 5,183 539 84,241 913 271,897
Hydro. 14 0,840 146 1,373 228 2,407
Fixed 5 0,101 8 0,100 12 0,118

1RZX

17
All 19 26,683 519 689,014 713 4483,937
Hydro. 18 1,576 226 6,815 364 16,584
Fixed 8 0,270 19 0,262 31 0,287

15
All 19 15,173 600 323,011 931 1707,972
Hydro. 17 1,123 199 2,942 337 5,640
Fixed 12 0,234 22 0,231 30 0,253

12
All 40 7,000 513 133,068 856 671,037
Hydro. 18 0,868 170 1,692 264 2,933
Fixed 8 0,120 13 0,121 16 0,135

10
All 15 5,707 501 105,130 759 536,278
Hydro. 15 0,835 139 1,428 223 2,366
Fixed 9 0,089 11 0,087 13 0,103

1N7F

17
All 67 22,902 577 603,960 810 4507,277
Hydro. 23 1,540 221 6,939 349 19,582
Fixed 7 0,216 15 0,252 22 0,308

15
All 84 12,234 661 248,828 974 1341,552
Hydro. 27 1,192 193 3,135 339 6,303
Fixed 9 0,139 13 0,151 23 0,172

12
All 38 7,658 545 150,875 930 575,559
Hydro. 17 0,903 140 2,159 277 4,287
Fixed 9 0,130 13 0,139 21 0,148

10
All 64 4,855 497 78,362 823 273,124
Hydro. 27 0,792 133 1,406 219 2,307
Fixed 9 0,100 12 0,099 15 0,108

1QAU

17
All 33 25,928 473 697,268 625 4842,914
Hydro. 28 1,643 222 7,778 344 20,606
Fixed 10 0,222 13 0,258 25 0,319

15
All 34 14,160 579 305,220 861 2061,548
Hydro. 26 1,211 183 3,692 311 8,653
Fixed 8 0,144 10 0,145 19 0,184

12
All 44 7,176 535 136,677 903 732,509
Hydro. 19 0,947 146 2,018 250 4,354
Fixed 5 0,124 7 0,127 14 0,148

10
All 80 5,142 529 82,623 919 265,242
Hydro. 26 0,773 130 1,388 233 2,710
Fixed 5 0,082 7 0,090 10 0,109

Table D.5: DEE with Java - 2FNE, 1RZX, 1N7F, 1QAU
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Protein Pos. Amino
Original DEE Simple Goldstein Simple Split

Acids
# Elim.

Time(s)
# Elim.

Time(s)
# Elim.

Time(s)
Rotamers Rotamers Rotamers

1TP3

17
All 34 24,078 449 614,867 659 4927,256
Hydro. 20 1,623 241 6,381 362 17,712
Fixed 9 0,225 18 0,234 30 0,241

15
All 31 15,435 517 356,142 813 2220,966
Hydro. 17 1,269 214 4,230 346 9,451
Fixed 12 0,173 19 0,165 25 0,193

12
All 24 8,436 490 185,516 866 1079,788
Hydro. 24 1,010 171 2,727 311 5,190
Fixed 10 0,128 14 0,127 20 0,152

10
All 37 6,000 485 112,576 850 426,576
Hydro. 23 0,901 149 1,710 259 3,006
Fixed 10 0,116 13 0,120 17 0,133

1I92

17
All 22 26,778 515 722,435 681 5997,457
Hydro. 26 1,819 260 9,047 374 25,570
Fixed 16 0,305 23 0,317 42 0,438

15
All 27 14,909 623 314,557 975 1908,529
Hydro. 31 1,192 219 4,240 318 10,095
Fixed 16 0,234 22 0,256 38 0,289

12
All 48 7,301 578 141,003 1041 521,726
Hydro. 29 0,935 169 2,314 266 4,687
Fixed 13 0,135 19 0,152 28 0,181

10
All 18 5,596 550 101,603 933 324,018
Hydro. 33 0,883 156 1,699 225 3,526
Fixed 11 0,130 18 0,135 26 0,151

Table D.6: DEE with Java - 1TP3, 1I92
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Protein Pos.
Amino

# Rotamers
Grounder Grounder Solver Total

Acids size(MB) time(s) time(s) time(s)

1MFG

17
All 2608 163,4 42,408 mem. —
Hydro. 560 6,8 1,799 mem. —
Fixed 41 0,0 0,009 0,020 0,029

15
All 1972 91,2 23,311 mem. —
Hydro. 410 3,4 0,903 +3h. —
Fixed 34 0,0 0,006 0,000 0,006

12
All 1500 52,5 13,006 mem. —
Hydro. 314 1,9 0,498 +3h. —
Fixed 28 0,0 0,005 0,000 0,005

10
All 1189 30,7 7,823 mem. —
Hydro. 250 1,2 0,309 +3h. —
Fixed 24 0,0 0,006 0,000 0,006

1BE9

17
All 2547 154,8 38,453 mem. —
Hydro. 529 6,1 1,553 +3h. —
Fixed 42 0,1 0,012 0,010 0,022

15
All 2063 98,9 25,034 mem. —
Hydro. 435 3,8 1,005 +3h. —
Fixed 35 0,0 0,008 0,000 0,008

12
All 1540 54,5 13,512 mem. —
Hydro. 330 2,1 0,564 +3h. —
Fixed 27 0,0 0,005 0,000 0,005

10
All 1292 36,5 9,127 mem. —
Hydro. 258 1,3 0,327 +3h. —
Fixed 21 0,0 0,003 0,000 0,003

2GZV

17
All 2934 202,5 50,067 mem. —
Hydro. 613 8,0 2,050 mem. —
Fixed 53 0,1 0,014 0,120 0,134

15
All 2247 115,0 29,281 mem. —
Hydro. 456 4,1 1,086 mem. —
Fixed 41 0,0 0,010 0,010 0,020

12
All 1721 66,6 16,596 mem. —
Hydro. 352 2,3 0,631 +3h. —
Fixed 35 0,0 0,007 0,000 0,007

10
All 1371 40,1 10,369 mem. —
Hydro. 275 1,4 0,371 +3h. —
Fixed 28 0,0 0,005 0,000 0,005

2EGN

17
All 2548 149,5 37,290 mem. —
Hydro. 546 6,2 1,643 mem. —
Fixed 44 0,1 0,013 0,020 0,033

15
All 2005 89,2 22,904 mem. —
Hydro. 413 3,2 0,878 +3h. —
Fixed 35 0,0 0,006 0,000 0,006

12
All 1371 40,0 10,438 mem. —
Hydro. 295 1,6 0,422 +3h. —
Fixed 26 0,0 0,004 0,000 0,004

10
All 1118 26,0 6,779 mem. —
Hydro. 238 1,1 0,262 +3h. —
Fixed 22 0,0 0,004 0,000 0,004

Table D.7: Simple Codification Results without DEE - 1MFG, 1BE9, 2GZV, 2EGN
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Protein Pos.
Amino

# Rotamers
Grounder Grounder Solver Total

Acids size(MB) time(s) time(s) time(s)

2FNE

17
All 2736 178,6 44,676 mem. —
Hydro. 577 7,2 1,885 mem. —
Fixed 45 0,1 0,013 0,030 0,043

15
All 2144 106,6 26,913 mem. —
Hydro. 438 3,8 1,023 mem. —
Fixed 39 0,0 0,010 0,010 0,020

12
All 1529 53,6 13,761 mem. —
Hydro. 316 1,9 0,511 +3h. —
Fixed 29 0,0 0,005 0,000 0,005

10
All 1257 33,2 8,692 mem. —
Hydro. 253 1,2 0,306 +3h. —
Fixed 24 0,0 0,005 0,000 0,005

1RZX

17
All 2722 173,3 44,909 mem. —
Hydro. 554 6,5 1,693 mem. —
Fixed 53 0,1 0,016 0,020 0,036

15
All 2121 100,7 25,021 mem. —
Hydro. 404 3,1 0,843 mem. —
Fixed 45 0,1 0,012 0,010 0,022

12
All 1452 45,2 11,907 mem. —
Hydro. 299 1,7 0,444 +3h. —
Fixed 28 0,0 0,005 0,000 0,005

10
All 1306 37,2 9,201 mem. —
Hydro. 253 1,3 0,311 +3h. —
Fixed 23 0,0 0,004 0,000 0,004

1N7F

17
All 2548 150,3 36,765 mem. —
Hydro. 544 6,2 1,645 mem. —
Fixed 46 0,1 0,013 0,170 0,183

15
All 1934 83,0 21,526 mem. —
Hydro. 402 3,0 0,833 +3h. —
Fixed 38 0,0 0,009 0,020 0,029

12
All 1539 52,8 13,142 mem. —
Hydro. 315 1,9 0,482 +3h. —
Fixed 33 0,0 0,008 0,000 0,008

10
All 1192 29,9 7,647 mem. —
Hydro. 246 1,1 0,288 +3h. —
Fixed 25 0,0 0,003 0,000 0,003

1QAU

17
All 2643 165,3 42,039 mem. —
Hydro. 562 6,8 1,780 mem. —
Fixed 47 0,1 0,014 0,170 0,184

15
All 2023 92,7 23,664 mem. —
Hydro. 421 3,4 0,937 mem. —
Fixed 37 0,0 0,007 0,020 0,027

12
All 1470 46,9 11,994 mem. —
Hydro. 309 1,8 0,474 +3h. —
Fixed 29 0,0 0,005 0,000 0,005

10
All 1223 32,0 8,290 mem. —
Hydro. 251 1,2 0,307 +3h. —
Fixed 23 0,0 0,004 0,000 0,004

Table D.8: Simple Codification Results without DEE - 2FNE, 1RZX, 1N7F, 1QAU
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Protein Pos.
Amino

# Rotamers
Grounder Grounder Solver Total

Acids size(MB) time(s) time(s) time(s)

1TP3

17
All 2582 158,3 39,623 mem. —
Hydro. 536 6,2 1,644 mem. —
Fixed 47 0,1 0,014 0,030 0,044

15
All 2142 106,2 26,743 mem. —
Hydro. 447 4,0 1,066 mem. —
Fixed 40 0,0 0,009 0,000 0,009

12
All 1627 60,3 15,200 mem. —
Hydro. 351 2,4 0,650 +3h. —
Fixed 32 0,0 0,007 0,000 0,007

10
All 1339 38,6 9,872 mem. —
Hydro. 279 1,5 0,384 +3h. —
Fixed 27 0,0 0,003 0,000 0,003

1I92

17
All 2648 164,5 42,600 mem. —
Hydro. 593 7,5 1,918 mem. —
Fixed 59 0,1 0,018 0,300 0,318

15
All 2055 96,0 24,474 mem. —
Hydro. 455 4,0 1,085 mem. —
Fixed 53 0,1 0,017 0,140 0,157

12
All 1524 51,5 12,877 mem. —
Hydro. 335 2,1 0,538 +3h. —
Fixed 40 0,0 0,009 0,010 0,019

10
All 1313 36,5 9,287 mem. —
Hydro. 283 1,5 0,392 +3h. —
Fixed 36 0,0 0,004 0,000 0,004

Table D.9: Simple Codification Results without DEE - 1TP3, 1I92
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Protein Pos.
Amino

# Rotamers
Grounder Grounder Solver Total

Acids size(MB) time(s) time(s) time(s)

1MFG

17
All 2025 98,8 24,876 mem. —
Hydro. 213 0,9 0,229 +3h. —
Fixed 17 0,0 0,003 0,000 0,003

15
All 1185 31,1 8,045 mem. —
Hydro. 89 0,2 0,037 679,220 679,257
Fixed 15 0,0 0,002 0,000 0,002

12
All 614 8,2 2,019 mem. —
Hydro. 41 0,0 0,009 0,230 0,239
Fixed 12 0,0 0,002 0,000 0,002

10
All 331 2,2 0,535 +3h. —
Hydro. 22 0,0 0,001 0,000 0,001
Fixed 10 0,0 0,000 0,000 0,000

1BE9

17
All 1941 90,5 22,928 mem. —
Hydro. 155 0,5 0,110 +3h. —
Fixed 19 0,0 0,005 0,000 0,005

15
All 1286 36,7 9,532 mem. —
Hydro. 62 0,1 0,019 1,700 1,719
Fixed 15 0,0 0,001 0,000 0,001

12
All 674 9,7 2,354 mem. —
Hydro. 19 0,0 0,002 0,000 0,002
Fixed 12 0,0 0,000 0,000 0,000

10
All 313 1,9 0,465 +3h. —
Hydro. 14 0,0 0,002 0,000 0,002
Fixed 10 0,0 0,000 0,000 0,000

2GZV

17
All 2322 128,5 32,351 mem. —
Hydro. 241 1,2 0,290 +3h. —
Fixed 17 0,0 0,002 0,000 0,002

15
All 1396 42,9 11,371 mem. —
Hydro. 101 0,2 0,050 +3h. —
Fixed 15 0,0 0,003 0,000 0,003

12
All 804 13,9 3,629 mem. —
Hydro. 55 0,1 0,015 2,380 2,395
Fixed 12 0,0 0,002 0,000 0,002

10
All 572 7,0 1,741 mem. —
Hydro. 25 0,0 0,003 0,010 0,013
Fixed 10 0,0 0,001 0,000 0,001

2EGN

17
All 1759 73,9 18,193 mem. —
Hydro. 164 0,5 0,135 +3h. —
Fixed 17 0,0 0,003 0,000 0,003

15
All 1034 23,2 6,022 mem. —
Hydro. 92 0,2 0,042 280,710 280,752
Fixed 15 0,0 0,004 0,000 0,004

12
All 426 3,7 0,928 mem. —
Hydro. 53 0,1 0,012 0,170 0,182
Fixed 12 0,0 0,001 0,000 0,001

10
All 255 1,3 0,321 +3h. —
Hydro. 33 0,0 0,006 0,010 0,016
Fixed 10 0,0 0,002 0,000 0,002

Table D.10: Simple Codification Results with DEE - 1MFG, 1BE9, 2GZV, 2EGN
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Protein Pos.
Amino

# Rotamers
Grounder Grounder Solver Total

Acids size(MB) time(s) time(s) time(s)

2FNE

17
All 2150 110,8 28,427 mem. —
Hydro. 219 1,0 0,241 +3h. —
Fixed 19 0,0 0,003 0,000 0,003

15
All 1386 42,8 11,242 mem. —
Hydro. 117 0,3 0,065 4976,490 4976,555
Fixed 17 0,0 0,002 0,000 0,002

12
All 670 9,8 2,550 mem. —
Hydro. 47 0,0 0,011 0,300 0,311
Fixed 14 0,0 0,003 0,000 0,003

10
All 344 2,4 0,591 +3h. —
Hydro. 25 0,0 0,004 0,000 0,004
Fixed 12 0,0 0,000 0,000 0,000

1RZX

17
All 2009 95,7 24,255 mem. —
Hydro. 190 0,7 0,174 +3h. —
Fixed 22 0,0 0,005 0,000 0,005

15
All 1190 30,3 8,013 mem. —
Hydro. 67 0,1 0,023 36,020 36,043
Fixed 15 0,0 0,002 0,000 0,002

12
All 596 7,5 1,839 mem. —
Hydro. 35 0,0 0,005 0,010 0,015
Fixed 12 0,0 0,001 0,000 0,001

10
All 547 6,4 1,527 mem. —
Hydro. 30 0,0 0,003 0,000 0,003
Fixed 10 0,0 0,000 0,000 0,000

1N7F

17
All 1738 71,6 17,627 mem. —
Hydro. 195 0,7 0,190 +3h. —
Fixed 24 0,0 0,005 0,000 0,005

15
All 960 19,7 5,381 mem. —
Hydro. 63 0,1 0,018 66,020 66,038
Fixed 15 0,0 0,000 0,000 0,000

12
All 609 8,0 1,991 mem. —
Hydro. 38 0,0 0,007 0,170 0,177
Fixed 12 0,0 0,000 0,000 0,000

10
All 369 2,8 0,690 +3h. —
Hydro. 27 0,0 0,003 0,000 0,003
Fixed 10 0,0 0,001 0,000 0,001

1QAU

17
All 2018 97,2 24,516 mem. —
Hydro. 218 0,9 0,238 +3h. —
Fixed 22 0,0 0,006 0,000 0,006

15
All 1162 29,3 7,613 mem. —
Hydro. 110 0,2 0,058 2295,620 2295,678
Fixed 18 0,0 0,002 0,000 0,002

12
All 567 6,9 1,707 mem. —
Hydro. 59 0,1 0,018 4,810 4,828
Fixed 15 0,0 0,002 0,000 0,002

10
All 304 1,8 0,450 +3h. —
Hydro. 18 0,0 0,003 0,000 0,003
Fixed 13 0,0 0,002 0,000 0,002

Table D.11: Simple Codification Results with DEE - 2FNE, 1RZX, 1N7F, 1QAU
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Protein Pos.
Amino

# Rotamers
Grounder Grounder Solver Total

Acids size(MB) time(s) time(s) time(s)

1TP3

17
All 1923 88,6 22,583 mem. —
Hydro. 174 0,6 0,149 +3h. —
Fixed 17 0,0 0,003 0,000 0,003

15
All 1329 39,2 10,526 mem. —
Hydro. 101 0,2 0,051 463,010 463,061
Fixed 15 0,0 0,004 0,000 0,004

12
All 761 12,5 3,136 mem. —
Hydro. 40 0,0 0,009 0,050 0,059
Fixed 12 0,0 0,001 0,000 0,001

10
All 489 5,0 1,244 mem. —
Hydro. 20 0,0 0,004 0,000 0,004
Fixed 10 0,0 0,002 0,000 0,002

1I92

17
All 1967 92,8 23,498 mem. —
Hydro. 219 0,9 0,239 +3h. —
Fixed 17 0,0 0,003 0,000 0,003

15
All 1080 25,1 6,676 mem. —
Hydro. 137 0,3 0,091 +3h. —
Fixed 15 0,0 0,002 0,000 0,002

12
All 483 4,8 1,227 mem. —
Hydro. 69 0,1 0,023 2,690 2,713
Fixed 12 0,0 0,002 0,000 0,002

10
All 380 2,9 0,713 mem. —
Hydro. 58 0,1 0,013 0,450 0,463
Fixed 10 0,0 0,001 0,000 0,001

Table D.12: Simple Codification Results with DEE - 1TP3, 1I92
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Protein Pos.
Amino

# Rotamers
Grounder Grounder Solver Total

Acids size(MB) time(s) time(s) time(s)

1MFG

17
All 2608 163,4 42,029 mem. —
Hydro. 560 6,8 1,833 mem. —
Fixed 41 0,0 0,010 0,010 0,020

15
All 1972 91,2 23,112 mem. —
Hydro. 410 3,4 0,883 +3h. —
Fixed 34 0,0 0,010 0,000 0,010

12
All 1500 52,5 13,024 mem. —
Hydro. 314 1,9 0,482 +3h. —
Fixed 28 0,0 0,003 0,000 0,003

10
All 1189 30,8 8,100 mem. —
Hydro. 250 1,2 0,296 +3h. —
Fixed 24 0,0 0,004 0,000 0,004

1BE9

17
All 2547 154,8 39,849 mem. —
Hydro. 529 6,1 1,584 +3h. —
Fixed 42 0,1 0,011 0,000 0,011

15
All 2063 98,9 25,096 mem. —
Hydro. 435 3,8 1,026 +3h. —
Fixed 35 0,0 0,008 0,000 0,008

12
All 1540 54,5 13,505 mem. —
Hydro. 330 2,1 0,553 +3h. —
Fixed 27 0,0 0,004 0,000 0,004

10
All 1292 36,5 9,437 mem. —
Hydro. 258 1,3 0,309 +3h. —
Fixed 21 0,0 0,003 0,000 0,003

2GZV

17
All 2934 202,5 52,527 mem. —
Hydro. 613 8,0 2,132 mem. —
Fixed 53 0,1 0,015 0,140 0,155

15
All 2247 115,0 30,135 mem. —
Hydro. 456 4,1 1,134 mem. —
Fixed 41 0,0 0,008 0,010 0,018

12
All 1721 66,6 17,255 mem. —
Hydro. 352 2,3 0,602 mem. —
Fixed 35 0,0 0,010 0,000 0,010

10
All 1371 40,1 10,824 mem. —
Hydro. 275 1,4 0,364 +3h. —
Fixed 28 0,0 0,005 0,000 0,005

2EGN

17
All 2548 149,5 38,045 mem. —
Hydro. 546 6,2 1,597 mem. —
Fixed 44 0,1 0,010 0,020 0,030

15
All 2005 89,2 22,850 mem. —
Hydro. 413 3,2 0,829 +3h. —
Fixed 35 0,0 0,007 0,000 0,007

12
All 1371 40,0 10,849 mem. —
Hydro. 295 1,6 0,403 +3h. —
Fixed 26 0,0 0,006 0,000 0,006

10
All 1118 26,0 6,667 mem. —
Hydro. 238 1,1 0,249 +3h. —
Fixed 22 0,0 0,003 0,000 0,003

Table D.13: Double Optimization Results without DEE - 1MFG, 1BE9, 2GZV, 2EGN
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Protein Pos.
Amino

# Rotamers
Grounder Grounder Solver Total

Acids size(MB) time(s) time(s) time(s)

2FNE

17
All 2736 178,6 47,006 mem. —
Hydro. 577 7,2 1,940 mem. —
Fixed 45 0,1 0,010 0,020 0,030

15
All 2144 106,6 27,178 mem. —
Hydro. 438 3,8 1,035 mem. —
Fixed 39 0,0 0,012 0,010 0,022

12
All 1529 53,6 13,729 mem. —
Hydro. 316 1,9 0,484 +3h. —
Fixed 29 0,0 0,006 0,000 0,006

10
All 1257 33,3 8,793 mem. —
Hydro. 253 1,2 0,289 +3h. —
Fixed 24 0,0 0,002 0,000 0,002

1RZX

17
All 2722 173,3 45,181 mem. —
Hydro. 554 6,5 1,677 mem. —
Fixed 53 0,1 0,016 0,020 0,036

15
All 2121 100,7 26,265 mem. —
Hydro. 404 3,1 0,801 mem. —
Fixed 45 0,1 0,012 0,000 0,012

12
All 1452 45,2 12,139 mem. —
Hydro. 299 1,7 0,417 +3h. —
Fixed 28 0,0 0,005 0,000 0,005

10
All 1306 37,2 9,555 mem. —
Hydro. 253 1,3 0,309 +3h. —
Fixed 23 0,0 0,002 0,000 0,002

1N7F

17
All 2548 150,3 38,246 mem. —
Hydro. 544 6,2 1,604 mem. —
Fixed 46 0,1 0,015 0,170 0,185

15
All 1934 83,0 21,736 mem. —
Hydro. 402 3,0 0,802 +3h. —
Fixed 38 0,0 0,010 0,020 0,030

12
All 1539 52,8 13,385 mem. —
Hydro. 315 1,9 0,484 +3h. —
Fixed 33 0,0 0,007 0,000 0,007

10
All 1192 30,0 7,956 mem. —
Hydro. 246 1,1 0,273 +3h. —
Fixed 25 0,0 0,004 0,000 0,004

1QAU

17
All 2643 165,3 43,229 mem. —
Hydro. 562 6,8 1,782 mem. —
Fixed 47 0,1 0,014 0,160 0,174

15
All 2023 92,7 24,098 mem. —
Hydro. 421 3,5 0,941 mem. —
Fixed 37 0,0 0,008 0,040 0,048

12
All 1470 46,9 12,541 mem. —
Hydro. 309 1,8 0,483 +3h. —
Fixed 29 0,0 0,005 0,000 0,005

10
All 1223 32,1 8,370 mem. —
Hydro. 251 1,2 0,292 +3h. —
Fixed 23 0,0 0,002 0,000 0,002

Table D.14: Double Optimization Results without DEE - 2FNE, 1RZX, 1N7F, 1QAU

77



Protein Pos.
Amino

# Rotamers
Grounder Grounder Solver Total

Acids size(MB) time(s) time(s) time(s)

1TP3

17
All 2582 158,3 41,525 mem. —
Hydro. 536 6,2 1,606 mem. —
Fixed 47 0,1 0,013 0,030 0,043

15
All 2142 106,2 26,938 mem. —
Hydro. 447 4,0 1,076 mem. —
Fixed 40 0,0 0,009 0,000 0,009

12
All 1627 60,3 15,724 mem. —
Hydro. 351 2,4 0,638 +3h. —
Fixed 32 0,0 0,008 0,000 0,008

10
All 1339 38,6 9,991 mem. —
Hydro. 279 1,5 0,357 +3h. —
Fixed 27 0,0 0,004 0,000 0,004

1I92

17
All 2648 164,5 42,089 mem. —
Hydro. 593 7,5 2,003 mem. —
Fixed 59 0,1 0,018 0,420 0,438

15
All 2055 96,0 25,064 mem. —
Hydro. 455 4,0 1,074 mem. —
Fixed 53 0,1 0,017 0,190 0,207

12
All 1524 51,5 12,781 mem. —
Hydro. 335 2,1 0,547 +3h. —
Fixed 40 0,0 0,009 0,010 0,019

10
All 1313 36,5 9,511 mem. —
Hydro. 283 1,5 0,378 +3h. —
Fixed 36 0,0 0,009 0,000 0,009

Table D.15: Double Optimization Results without DEE - 1TP3, 1I92
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Protein Pos.
Amino

# Rotamers
Grounder Grounder Solver Total

Acids size(MB) time(s) time(s) time(s)

1MFG

17
All 2025 98,8 25,379 mem. —
Hydro. 213 0,9 0,225 +3h. —
Fixed 17 0,0 0,003 0,000 0,003

15
All 1185 31,2 8,442 mem. —
Hydro. 89 0,2 0,039 620,220 620,259
Fixed 15 0,0 0,004 0,000 0,004

12
All 614 8,2 2,102 mem. —
Hydro. 41 0,0 0,007 0,200 0,207
Fixed 12 0,0 0,003 0,000 0,003

10
All 331 2,2 0,536 +3h. —
Hydro. 22 0,0 0,002 0,000 0,002
Fixed 10 0,0 0,002 0,000 0,002

1BE9

17
All 1941 90,5 23,499 mem. —
Hydro. 155 0,5 0,113 +3h. —
Fixed 19 0,0 0,004 0,000 0,004

15
All 1286 36,7 9,635 mem. —
Hydro. 62 0,1 0,018 1,760 1,778
Fixed 15 0,0 0,001 0,000 0,001

12
All 674 9,7 2,451 mem. —
Hydro. 19 0,0 0,002 0,000 0,002
Fixed 12 0,0 0,002 0,000 0,002

10
All 313 1,9 0,459 +3h. —
Hydro. 14 0,0 0,001 0,000 0,001
Fixed 10 0,0 0,002 0,000 0,002

2GZV

17
All 2322 128,5 33,563 mem. —
Hydro. 241 1,2 0,287 +3h. —
Fixed 17 0,0 0,003 0,000 0,003

15
All 1396 43,0 11,488 mem. —
Hydro. 101 0,2 0,046 +3h. —
Fixed 15 0,0 0,004 0,000 0,004

12
All 804 13,9 3,580 mem. —
Hydro. 55 0,1 0,014 2,400 2,414
Fixed 12 0,0 0,002 0,000 0,002

10
All 572 7,0 1,730 mem. —
Hydro. 25 0,0 0,004 0,000 0,004
Fixed 10 0,0 0,001 0,000 0,001

2EGN

17
All 1759 73,9 18,940 mem. —
Hydro. 164 0,5 0,124 +3h. —
Fixed 17 0,0 0,003 0,000 0,003

15
All 1034 23,2 6,075 mem. —
Hydro. 92 0,2 0,041 279,140 279,181
Fixed 15 0,0 0,002 0,000 0,002

12
All 426 3,7 0,918 mem. —
Hydro. 53 0,1 0,012 0,180 0,192
Fixed 12 0,0 0,003 0,000 0,003

10
All 255 1,3 0,305 +3h. —
Hydro. 33 0,0 0,006 0,010 0,016
Fixed 10 0,0 0,002 0,000 0,002

Table D.16: Double Optimization Results with DEE - 1MFG, 1BE9, 2GZV, 2EGN
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Protein Pos.
Amino

# Rotamers
Grounder Grounder Solver Total

Acids size(MB) time(s) time(s) time(s)

2FNE

17
All 2150 110,8 28,360 mem. —
Hydro. 219 1,0 0,241 +3h. —
Fixed 19 0,0 0,003 0,000 0,003

15
All 1386 42,8 11,429 mem. —
Hydro. 117 0,3 0,062 4815,980 4816,042
Fixed 17 0,0 0,003 0,000 0,003

12
All 670 9,8 2,504 mem. —
Hydro. 47 0,0 0,010 0,310 0,320
Fixed 14 0,0 0,001 0,000 0,001

10
All 344 2,4 0,577 +3h. —
Hydro. 25 0,0 0,003 0,000 0,003
Fixed 12 0,0 0,002 0,000 0,002

1RZX

17
All 2009 95,7 24,802 mem. —
Hydro. 190 0,7 0,180 +3h. —
Fixed 22 0,0 0,005 0,000 0,005

15
All 1190 30,4 8,192 mem. —
Hydro. 67 0,1 0,021 42,290 42,311
Fixed 15 0,0 0,001 0,000 0,001

12
All 596 7,5 1,852 mem. —
Hydro. 35 0,0 0,004 0,010 0,014
Fixed 12 0,0 0,003 0,000 0,003

10
All 547 6,4 1,543 mem. —
Hydro. 30 0,0 0,005 0,000 0,005
Fixed 10 0,0 0,002 0,000 0,002

1N7F

17
All 1738 71,6 18,299 mem. —
Hydro. 195 0,7 0,184 +3h. —
Fixed 24 0,0 0,005 0,000 0,005

15
All 960 19,7 5,405 mem. —
Hydro. 63 0,1 0,020 63,790 63,810
Fixed 15 0,0 0,004 0,000 0,004

12
All 609 8,0 2,061 mem. —
Hydro. 38 0,0 0,008 0,170 0,178
Fixed 12 0,0 0,003 0,000 0,003

10
All 369 2,8 0,696 +3h. —
Hydro. 27 0,0 0,005 0,000 0,005
Fixed 10 0,0 0,001 0,000 0,001

1QAU

17
All 2018 97,2 25,171 mem. —
Hydro. 218 0,9 0,236 +3h. —
Fixed 22 0,0 0,004 0,000 0,004

15
All 1162 29,4 7,926 mem. —
Hydro. 110 0,2 0,057 1943,740 1943,797
Fixed 18 0,0 0,002 0,000 0,002

12
All 567 6,9 1,691 mem. —
Hydro. 59 0,1 0,017 4,660 4,677
Fixed 15 0,0 0,003 0,000 0,003

10
All 304 1,8 0,441 +3h. —
Hydro. 18 0,0 0,003 0,000 0,003
Fixed 13 0,0 0,002 0,000 0,002

Table D.17: Double Optimization Results with DEE - 2FNE, 1RZX, 1N7F, 1QAU
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Protein Pos.
Amino

# Rotamers
Grounder Grounder Solver Total

Acids size(MB) time(s) time(s) time(s)

1TP3

17
All 1923 88,6 23,009 mem. —
Hydro. 174 0,6 0,148 +3h. —
Fixed 17 0,0 0,003 0,000 0,003

15
All 1329 39,3 10,811 mem. —
Hydro. 101 0,2 0,048 394,940 394,988
Fixed 15 0,0 0,002 0,000 0,002

12
All 761 12,5 3,162 mem. —
Hydro. 40 0,0 0,009 0,060 0,069
Fixed 12 0,0 0,002 0,000 0,002

10
All 489 5,0 1,219 mem. —
Hydro. 20 0,0 0,004 0,000 0,004
Fixed 10 0,0 0,001 0,000 0,001

1I92

17
All 1967 92,8 24,064 mem. —
Hydro. 219 0,9 0,233 +3h. —
Fixed 17 0,0 0,002 0,000 0,002

15
All 1080 25,1 6,645 mem. —
Hydro. 137 0,3 0,088 +3h. —
Fixed 15 0,0 0,002 0,000 0,002

12
All 483 4,8 1,193 mem. —
Hydro. 69 0,1 0,022 3,390 3,412
Fixed 12 0,0 0,002 0,000 0,002

10
All 380 2,9 0,721 mem. —
Hydro. 58 0,1 0,015 0,450 0,465
Fixed 10 0,0 0,001 0,000 0,001

Table D.18: Double Optimization Results with DEE - 1TP3, 1I92
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