

Proxy Attribute Discovery in Machine Learning Datasets via Inductive Logic Programming

Rafael Gonçalves, Filipe Gouveia, Inês Lynce, José Fragoso Santos INESC-ID & Instituto Superior Técnico, Universidade de Lisboa, Portugal

TACAS '25, Hamilton, Canada

Fundação para a Ciência e a Tecnologia

October 11, 2018

Amazon Scraps Secret Al Recruiting Engine that Showed Biases Against Women

Al Research scientists at Amazon uncovered biases against women on their recruiting machine learning engine

October 11, 2018

Amazon Scraps Secret Al Recruiting Engine that Showed Biases Against Women

Al Research scientists at Amazon uncovered biases against women on their recruiting machine learning engine

> Exclusive: Age, disability, marital status and nationality influence decisions to investigate claims, prompting fears of 'hurt first, fix later' approach

October 11, 2018

Amazon Scraps Secret Al Recruiting Engine that Showed Biases Against Women

Al Research scientists at Amazon uncovered biases against women on their recruiting machine learning engine

> Exclusive: Age, disability, marital status and nationality influence decisions to investigate claims, prompting fears of 'hurt first, fix later' approach

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica

May 23, 2016

Bias can persist despite mitigation efforts

Common mitigation: avoid making decisions based on protected information **Issue:** indirect discrimination

> D.C. sues Amazon for excluding majority Black ZIP codes from Prime delivery

f 🗶 in 🕥 🗳

Bias can persist despite mitigation efforts

Common mitigation: avoid making decisions based on protected information **Issue:** indirect discrimination

• Non-protected data might disclose information about protected data

Proxy attributes

ZIP code discloses race

D.C. sues Amazon for excluding majority Black ZIP codes from Prime delivery

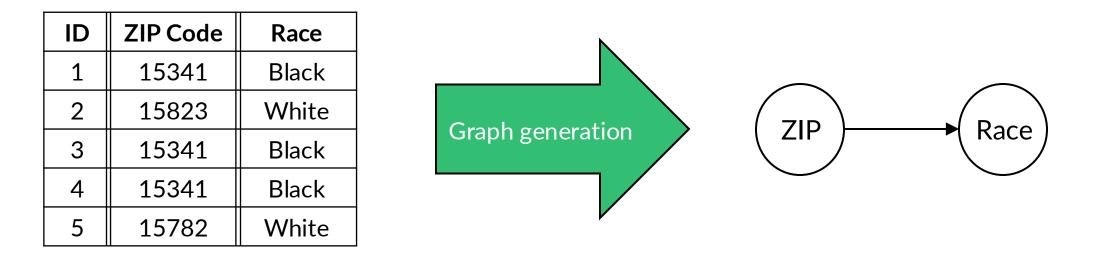
f 🗶 in 🕥 🗳

Model datasets as causal graphs and detect relations [Kilbertus17,Kusner17]

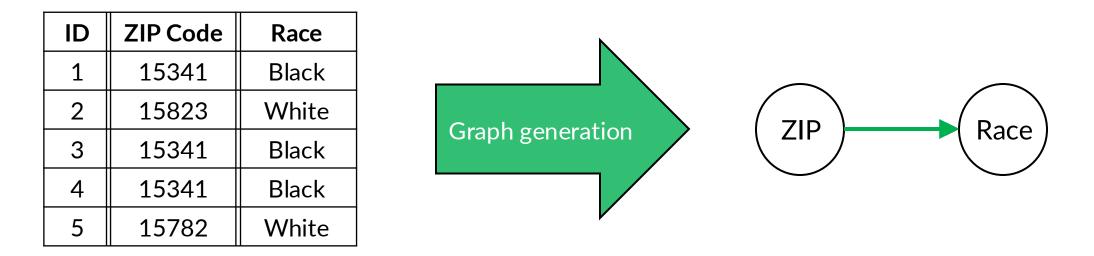
Model datasets as causal graphs and detect relations [Kilbertus17,Kusner17]

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White

Model datasets as causal graphs and detect relations [Kilbertus17,Kusner17]



Model datasets as causal graphs and detect relations [Kilbertus17,Kusner17]



C1: How do we define

- User-provided (standard)
- Learned from the dataset [LeQuy22]

C2: No support for arithmetic relations beyond equality

• Need to categorize numeric attributes

C3: Lack of expressivity of the output

• No insight into underlying proxy relation

Le Quy et al. A survey on datasets for fairness-aware machine learning. WIREs Data Mining and Knowledge Discovery 12(3).

C1: How do we define

- User-provided (standard)
- Learned from the dataset [LeQuy22]

C2: No support for arithmetic relations beyond equality

Graph

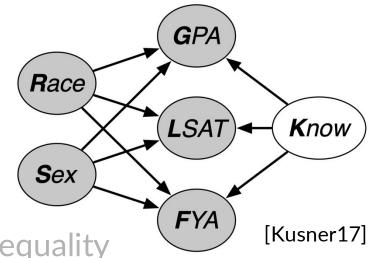
?

• Need to categorize numeric attributes

C3: Lack of expressivity of the output

• No insight into underlying proxy relation

Le Quy et al. A survey on datasets for fairness-aware machine learning. WIREs Data Mining and Knowledge Discovery 12(3). Kusner et al. Counterfactual fairness. NIPS '17.



C1: How do we define Graph generation ?

- User-provided (standard)
- Learned from the dataset [LeQuy22]

C2: No support for arithmetic relations beyond equality

• Need to categorize numeric attributes

C3: Lack of expressivity of the output

• No insight into underlying proxy relation

Le Quy et al. A survey on datasets for fairness-aware machine learning. WIREs Data Mining and Knowledge Discovery 12(3).

C1: How do we define Graph generation ?

- User-provided (standard)
- Learned from the dataset [LeQuy22]

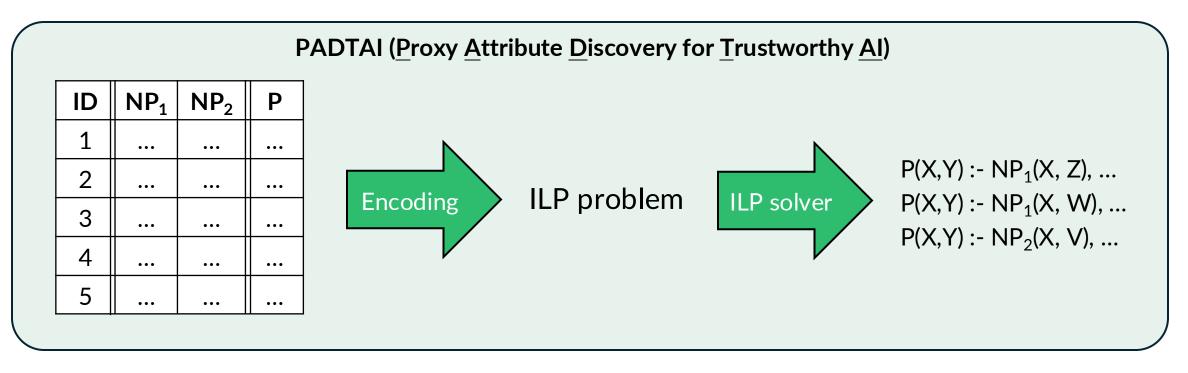
C2: No support for arithmetic relations beyond equality

• Need to categorize numeric attributes

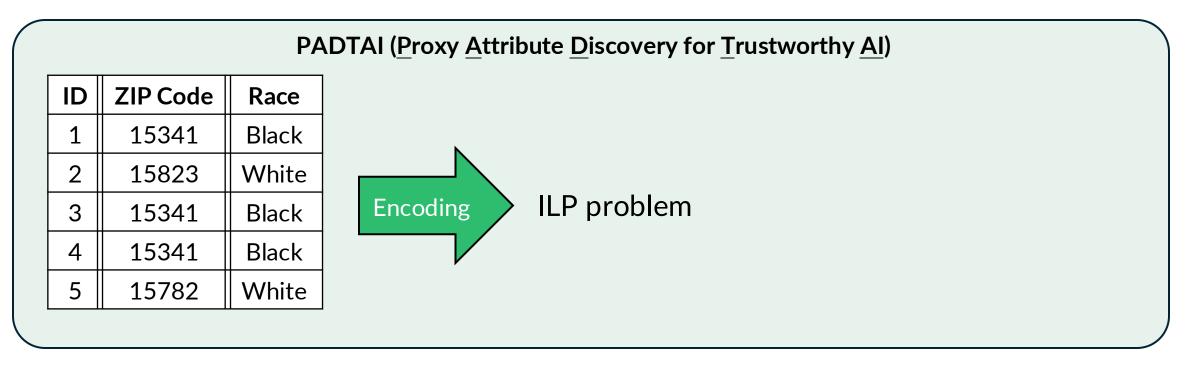
C3: Lack of expressivity of the output

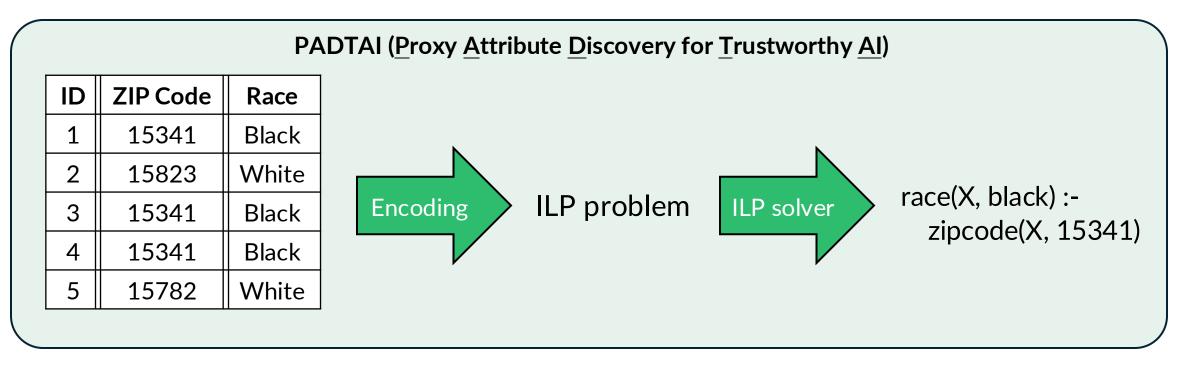
• No insight into underlying proxy relation

Le Quy et al. A survey on datasets for fairness-aware machine learning. WIREs Data Mining and Knowledge Discovery 12(3).



PADTAI (Proxy Attribute Discovery for Trustworthy AI)			
ID	ZIP Code	Race	
1	15341	Black	
2	15823	White	
3	15341	Black	
4	15341	Black	
5	15782	White	





How do we encode proxy attribute discovery as an ILP problem?

Encoding: general idea

Goal: Given dataset, infer rules that compute the protected attribute from the non-protected attributes

Encoding: general idea

Goal: Given dataset, infer rules that compute the protected attribute from the non-protected attributes

What does the ILP solver expect as input?

- **Decision points:** values that the solver can use to make a decision
- Column relations: what we already know
- **Examples:** what we're trying to predict

Encoding: general idea

Goal: Given dataset, infer rules that compute the protected attribute from the non-protected attributes

What do we need to encode?

- **Decision points:** distinct values appearing in the dataset
- Column relations: what the non-protected attributes of each row are
- **Examples:** what the protected attribute of each row is

Encoding by example

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White

Input: ZIP Code/Race dataset

Goal: Infer rules that compute Race from ZIP Code

Encoding by example

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White

Input: ZIP Code/Race dataset

Goal: Infer rules that compute Race from ZIP Code

Encoding by example: decision points

Goal: Encode distinct values appearing in the dataset

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White

Encoding by example: decision points

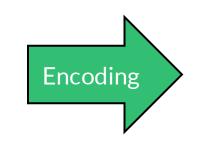
Goal: Encode distinct values appearing in the dataset

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White

Encoding by example: decision points

Goal: Encode distinct values appearing in the dataset

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White



- pwhite(white).
- 2 pblack(black).
- ³ p15341(15341).
- 4 p15823(15823).
- ⁵ p15782(15782).

Encoding by example: column relations

Goal: Encode non-protected attributes of each row

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White

Encoding by example: column relations

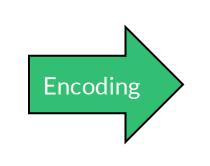
Goal: Encode non-protected attributes of each row

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White

Encoding by example: column relations

Goal: Encode non-protected attributes of each row

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White



- ¹ pzipcode(1,15341).
- ² pzipcode(2,15823).
- ³ pzipcode(3,15341).
- 4 pzipcode(4,15341).
- ⁵ pzipcode(5,15782).

Encoding by example: examples

Goal: Encode protected attribute of each row

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White

Encoding by example: examples

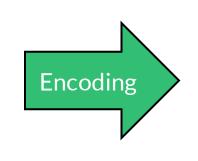
Goal: Encode protected attribute of each row

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White

Encoding by example: examples

Goal: Encode protected attribute of each row

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White



1

5

- pos(prace(1,black)).
- 2 pos(prace(2, white)).
- 3 pos(prace(3, black)).
- 4 pos(prace(4, black)).
 - pos(prace(5,white)).

Full encoding and inferred rule

Goal: Infer rules that compute Race from ZIP Code

- pwhite(white).
- 2 pblack(black).
- ³ p15341(15341).
- ⁴ p15823(15823).
- ⁵ p15782(15782).

- ¹ pzipcode(1,15341).
- ² pzipcode(2,15823).
- ³ pzipcode(3,15341).
- 4 pzipcode(4,15341).
- ⁵ pzipcode(5,15782).
- pos(prace(1, black)).
- 2 pos(prace(2, white)).
- 3 pos(prace(3, black)).
- 4 pos(prace(4, black)).
- 5 pos(prace(5, white)).

Full encoding and inferred rule

Goal: Infer rules that compute **Race** from **ZIP Code**

- pwhite(white). 1
- pblack(black). 2
- p15341(15341). 3
- p15823(15823).
- p15782(15782).

- ¹ pzipcode(1,15341).
- ² pzipcode(2,15823).
- pzipcode(3,15341). 3
- 4 pzipcode(4,15341).
- pzipcode(5,15782). 5
- pos(prace(1, black)).
- pos(prace(2, white)). $\mathbf{2}$
- pos(prace(3,black)). 3
- pos(prace(4, black)). 4
- pos(prace(5, white)).

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

X is black if their ZIP Code is 15341

Full encoding and inferred rule

Goal: Infer rules that compute Race from ZIP Code

- pwhite(white).
- 2 pblack(black).
- ³ p15341(15341).
- 4 p15823(15823).
- ⁵ p15782(15782).

- ¹ pzipcode(1,15341).
- ² pzipcode(2,15823).
- ³ pzipcode(3,15341).
- 4 pzipcode(4,15341).
- ⁵ pzipcode(5,15782).
- pos(prace(1, black)).
- 2 pos(prace(2, white)).
- 3 pos(prace(3, black)).
- 4 pos(prace(4, black)).
- 5 pos(prace(5, white)).

ILP solver

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

X is black if their ZIP Code is 15341

C1: How do we handle conflicting rows?

• Plurality voting

C2: How do we scale to large datasets?

- Sampling
- Need to validate inferred rules against entire dataset

- Encoding is parametric on set of arithmetic relations
- Support for less-than operator by default
- User can extend with additional operations

C1: How do we handle conflicting rows?

• Plurality voting

C2: How do we scale to large datasets?

- Sampling
- Need to validate inferred rules against entire dataset

- Encoding is parametric on set of arithmetic relations
- Support for less-than operator by default
- User can extend with additional operations

ID	ZIP Code	Race
1	15341	Black
2	15341	White
3	15341	Black

C1: How do we handle conflicting rows?

• Plurality voting

C2: How do we scale to large datasets?

- Sampling
- Need to validate inferred rules against entire dataset

- Encoding is parametric on set of arithmetic relations
- Support for less-than operator by default
- User can extend with additional operations

1)	ZIP Code	Race
1	L	15341	Black
2	2	15341	White
3	3	15341	Black

C1: How do we handle conflicting rows?

• Plurality voting

C2: How do we scale to large datasets?

- Sampling
- Need to validate inferred rules against entire dataset

- Encoding is parametric on set of arithmetic relations
- Support for less-than operator by default
- User can extend with additional operations

ID	ZIP Code	Race
1	15341	Black
2	15341	White
3	15341	Black

C1: How do we handle conflicting rows?

• Plurality voting

C2: How do we scale to large datasets?

- Sampling
- Need to validate inferred rules against entire dataset

- Encoding is parametric on set of arithmetic relations
- Support for less-than operator by default
- User can extend with additional operations

ID	ZIP Code	Race
1	15341	Black
2	15341	White
3	15341	Black

C1: How do we handle conflicting rows?

• Plurality voting

C2: How do we scale to large datasets?

- Sampling
- Need to validate inferred rules against entire dataset

- Encoding is parametric on set of arithmetic relations
- Support for less-than operator by default
- User can extend with additional operations

C1: How do we handle conflicting rows?

• Plurality voting

C2: How do we scale to large datasets?

- Sampling
- Need to validate inferred rules against entire dataset

- Encoding is parametric on set of arithmetic relations
- Support for less-than operator by default
- User can extend with additional operations

C1: How do we handle conflicting rows?

• Plurality voting

C2: How do we scale to large datasets?

- Sampling
- Need to validate inferred rules against entire dataset

- Encoding is parametric on set of arithmetic relations
- Support for less-than operator by default
- User can extend with additional operations

Filter rules to ensure they are general, accurate and statistically significant

Filter rules to ensure they are general, accurate and statistically significant

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code Race	
1	15341 Black	
2	15823 White	
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code Race	
1	15341 Black	
2	15823 White	
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y) $R = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FN}}$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code	Race
1	15341	Black
2	15823 White	
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$R = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FN}}$$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$R = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FN}}$$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code Race	
1	15341	Black
2	15823 White	
3	15341 Black	
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$R = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FN}}$$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code Race	
1	15341 Black	
2	15823 White	
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$R = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FN}}$$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code	Race	
1	15341	Black	
2	15823	White	
3	15341	Black	race(X, Y) :- zipcode(X,
4	15341	Black	p15341(Z)
5	15782	White	pblack(Y)
6	15245	Black	
7	15341	White	→ R = 3/4

Fraction of rows where we can correctly predict the protected attribute among all rows where the protected attribute occurs

Higher is better (ideally: >10/15%)

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code Race	
1	15341 Black	
2	15823 White	
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y) $P = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FP}}$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code Race	
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$P = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FP}}$$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y) $P = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FP}}$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$P = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FP}}$$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$P = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FP}}$$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$P = 3/4$$

 $P = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FP}}$

Fraction of rows where we can correctly predict the protected attribute among all rows where the protected attribute is predicted to occur

Higher is better (ideally: >90%)

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code Race	
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$C = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{TN} + \mathbf{FP} + \mathbf{FN}}$$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$C = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{TN} + \mathbf{FP} + \mathbf{FN}}$$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$C = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{TN} + \mathbf{FP} + \mathbf{FN}}$$

Filter rules to ensure they are general, accurate and statistically significant

ID	ZIP Code	Race
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$C = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{TN} + \mathbf{FP} + \mathbf{FN}}$$

Filter rules to ensure they are general, accurate and statistically significant

ID	ID ZIP Code Race	
1	15341	Black
2	15823	White
3	15341	Black
4	15341	Black
5	15782	White
6	15245	Black
7	15341	White

race(X, Y) :zipcode(X, Z), p15341(Z), pblack(Y)

$$C = 3/7$$

$$C = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{TN} + \mathbf{FP} + \mathbf{FN}}$$

Fraction of rows where we can correctly predict the protected attribute among all rows

Higher is better (ideally: >5/10%)

EQ: Can PADTAI find proxy attributes in real-world datasets?

Ran PADTAI with Popper [Cropper21] ILP solver on 10 datasets

Dataset	Task	Protected	$\# \mathbf{Proxies}$
Adult	income > US\$50 000?	race, sex, age	2
KDD	income > US\$50 000?	sex, race	2
German Credit	credit risk?	age, foreign-worker	1
Bank Marketing	makes deposit?	age, marital	1
Credit Card	default risk?	education, marriage, sex	1
COMPAS	recidivism risk?	race, sex	2
Ricci	promoted?	race	1
Students	final year grade?	sex, age	1
OULAD	final result?	gender	1
Lawschool	passes bar?	gender, race	2

Ran PADTAI with Popper [Cropper21] ILP solver on 10 datasets

Dataset	Task	Protected	$\# \mathbf{Proxies}$
Adult	income > US\$50 000?	race, sex, age	2
KDD	income > US\$50 000?	sex, race	2
German Credit	credit risk?	age, foreign-worker	1
Bank Marketing	makes deposit?	age, marital	1
Credit Card	default risk?	education, marriage, sex	1
COMPAS	$recidivism\ risk?$	race, sex	2
Ricci	promoted?	race	1
Students	final year grade?	sex, age	1
OULAD	final result?	gender	1
Lawschool	passes bar?	gender, race	2

Ran PADTAI with Popper [Cropper21] ILP solver on 10 datasets

Dataset	Task	Protected	# Proxies
A dult	income > US\$50 000?	race, sex, age	2
KDD	income > US\$50 000?	sex, race	2
German Credit	credit risk?	age, foreign-worker	1
Bank Marketing	makes deposit?	age, marital	1
Credit Card	default risk?	education, marriage, sex	1
COMPAS	recidivism risk?	race, sex	2
Ricci	promoted?	race	1
Students	final year grade?	sex, age	1
OULAD	final result?	gender	1
Lawschool	passes bar?	gender, race	2

Ran PADTAI with Popper [Cropper21] ILP solver on 10 datasets

Dataset	Task	Protected	# Proxies
Adult	income > US\$50 000?	race, sex, age	2
KDD	income > US\$50 000?	sex, race	2
German Credit	credit risk?	age, foreign-worker	1
Bank Marketing	makes deposit?	age, marital	1
Credit Card	default risk?	education, marriage, sex	1
COMPAS	recidivism risk?	race, sex	2
Ricci	promoted?	race	1
Students	final year grade?	sex, age	1
OULAD	final result?	gender	1
Lawschool	passes bar?	gender, race	2

Ran PADTAI with Popper [Cropper21] ILP solver on 10 datasets

Dataset	Task	Protected	$\# \mathbf{Proxies}$
Adult	income > US\$50 000?	race, sex, age	2
KDD	income > US\$50 000?	sex, race	2
German Credit	credit risk?	age, foreign-worker	1
Bank Marketing	makes deposit?	age, marital	1
Credit Card	default risk?	education, marriage, sex	1
COMPAS	recidivism risk?	race, sex	2
Ricci	promoted?	race	1
Students	final year grade?	sex, age	1
OULAD	final result?	gender	1
Lawschool	passes bar?	gender, race	2

Can PADTAI find proxy attributes?

PADTAI detects up to 83 proxy relations in 8 datasets with varying thresholds, corresponding to 49 potential proxy attributes, including 11 previously identified in the literature and 38 new ones

Dataset	Recall / Precision / Coverage (%)				
Dataset	20 / 90 / 15	15/85/10	10 / 80 / 5	5/80/2.5	
Adult (2)					
KDD (2)					
German Credit (1)					
Bank Marketing (1)					
Credit Card (1)					
COMPAS (2)					
Ricci (1)					
Students (1)					
OULAD (1)					
Lawschool (2)					
Total (14)					

Dataset	Re	ecall / Precisior	n / Coverage ((%)
Dataset	20 / 90 / 15	15/85/10	10 / 80 / 5	5/80/2.5
Adult (2)				
KDD (2)				
German Credit (1)				
Bank Marketing (1)				
Credit Card (1)				
COMPAS (2)				
Ricci (1)				
Students (1)				
OULAD (1)				
Lawschool (2)				
Total (14)				

Dataset	Re	ecall / Precision	n / Coverage ((%)
Dataset	20 / 90 / 15	15/85/10	10 / 80 / 5	5 / 80 / 2.5
Adult (2)				
KDD (2)				
German Credit (1)				
Bank Marketing (1)				
Credit Card (1)				
COMPAS (2)				
Ricci (1)				
Students (1)				
OULAD (1)				
Lawschool (2)				
Total (14)				

Dataset	$\mathbf{Recall} / \mathbf{Precision} / \mathbf{Coverage} \ (\%)$			
Dataset	20 / 90 / 15	15 / 85 / 10	10 / 80 / 5	5 / 80 / 2.5
Adult (2)	1 (61/100/41)	3 (32/95/23)	6 (22/93/16)	27 (10/91/8)
KDD (2)	-	1 (38/87/18)	2 (25/83/12)	14 (9/86/6)
German Credit (1)	6 (32/98/31)	10 (26/98/25)	13 (23/98/21)	17 (19/97/18)
Bank Marketing (1)	-	_	-	-
Credit Card (1)	_	_	-	1 (8/83/4)
COMPAS (2)	-	_	-	_
Ricci (1)	-	1 (25/94/14)	2 (27/97/11)	5 (17/95/6)
Students (1)	_	_	3 (11/82/6)	13 (7/87/4)
OULAD (1)	—	—	-	2 (5/90/3)
Lawschool (2)	_	—	-	4 (7/87/6)
Total (14)	7 (36/98/32)	15 (28/96/23)	26 (22/94/17)	83 (11/91/9)

Dataset	$\mathbf{Recall} / \mathbf{Precision} / \mathbf{Coverage} \ (\%)$			
Dataset	20 / 90 / 15	15 / 85 / 10	10 / 80 / 5	5 / 80 / 2.5
Adult (2)	1 (61/100/41)	3 (32/95/23)	6 (22/93/16)	27 (10/91/8)
KDD (2)	-	1 (38/87/18)	2 (25/83/12)	14 (9/86/6)
German Credit (1)	6 (32/98/31)	10 (26/98/25)	13 (23/98/21)	17 (19/97/18)
Bank Marketing (1)	-	_	-	-
Credit Card (1)	_	_	-	1 (8/83/4)
COMPAS (2)	-	_	-	_
Ricci (1)	-	1 (25/94/14)	2 (27/97/11)	5 (17/95/6)
Students (1)	_	_	3 (11/82/6)	13 (7/87/4)
OULAD (1)	-	—	-	2 (5/90/3)
Lawschool (2)			_	4 (7/87/6)
Total (14)	7 (36/98/32)	15 (28/96/23)	26 (22/94/17)	83 (11/91/9)

Dataset	$\mathbf{Recall} / \mathbf{Precision} / \mathbf{Coverage} \ (\%)$			
Dataset	20 / 90 / 15	15 / 85 / 10	10 / 80 / 5	5 / 80 / 2.5
Adult (2)	1 (61/100/41)	3 (32/95/23)	6 (22/93/16)	27 (10/91/8)
KDD (2)	-	1 (38/87/18)	2 (25/83/12)	14 (9/86/6)
German Credit (1)	6 (32/98/31)	10 (26/98/25)	13 (23/98/21)	17 (19/97/18)
Bank Marketing (1)	-	_	-	_
Credit Card (1)	_	_	_	1 (8/83/4)
COMPAS (2)	-	_	-	_
Ricci (1)	-	1 (25/94/14)	2 (27/97/11)	5 (17/95/6)
Students (1)	_	_	3 (11/82/6)	13 (7/87/4)
OULAD (1)	-	—	-	2 (5/90/3)
Lawschool (2)		_	_	4 (7/87/6)
Total (14)	7 (36/98/32)	15 (28/96/23)	26 (22/94/17)	83 (11/91/9)

Dataset	Re	$\mathbf{ecall} / \mathbf{Precision}$	$\mathbf{n} / \mathbf{Coverage} \ ($	(%)
Dataset	20 / 90 / 15	15/85/10	10/80/5	5 / 80 / 2.5
Adult (2)	1 (61/100/41)	3 (32/95/23)	6 (22/93/16)	27 (10/91/8)
KDD (2)		1 (38/87/18)	2 (25/83/12)	14 (9/86/6)
German Credit (1)	6 (32/98/31)	10 (26/98/25)	13 (23/98/21)	17 (19/97/18)
Bank Marketing (1)	-	_	_	_
Credit Card (1)	_	_	-	1 (8/83/4)
COMPAS (2)	-	_	_	_
Ricci (1)		1 (25/94/14)	2 (27/97/11)	5 (17/95/6)
Students (1)	_	_	3 (11/82/6)	13 (7/87/4)
OULAD (1)	-	—	—	2 (5/90/3)
Lawschool (2)	-	_	_	4 (7/87/6)
Total (14)	7 (36/98/32)	15 (28/96/23)	26 (22/94/17)	83 (11/91/9)

Dataset	$\mathbf{Recall} / \mathbf{Precision} / \mathbf{Coverage} \ (\%)$			
Dataset	20 / 90 / 15	15 / 85 / 10	10 / 80 / 5	5/80/2.5
Adult (2)	1 (61/100/41)	3 (32/95/23)	6 (22/93/16)	27 (10/91/8)
KDD (2)	-	1 (38/87/18)	2 (25/83/12)	14 (9/86/6)
German Credit (1)	6 (32/98/31)	10 (26/98/25)	13 (23/98/21)	17 (19/97/18)
Bank Marketing (1)	—	—	—	-
Credit Card (1)			-	1 (8/83/4)
COMPAS (2)	-	_	-	-
Ricci (1)	_	1 (25/94/14)	2 (27/97/11)	5 (17/95/6)
Students (1)	_		3 (11/82/6)	13 (7/87/4)
OULAD (1)	-	_	-	2~(5/90/3)
Lawschool (2)			_	4 (7/87/6)
Total (14)	7 (36/98/32)	15 (28/96/23)	26 (22/94/17)	83 (11/91/9)

Dataset	$\mathbf{Recall} / \mathbf{Precision} / \mathbf{Coverage} \ (\%)$			
Dataset	20 / 90 / 15	15 / 85 / 10	10 / 80 / 5	5 / 80 / 2.5
Adult (2)	1 (61/100/41)	3 (32/95/23)	6 (22/93/16)	27 (10/91/8)
KDD (2)	-	1 (38/87/18)	2 (25/83/12)	14 (9/86/6)
German Credit (1)	6 (32/98/31)	10 (26/98/25)	13 (23/98/21)	17 (19/97/18)
Bank Marketing (1)	-	-	-	-
Credit Card (1)	_	_	-	1 (8/83/4)
COMPAS (2)	-	_	-	-
Ricci (1)	-	1 (25/94/14)	2 (27/97/11)	5 (17/95/6)
Students (1)	_	_	3 (11/82/6)	13 (7/87/4)
OULAD (1)	-	—	-	2 (5/90/3)
Lawschool (2)			-	4 (7/87/6)
Total (14)	7 (36/98/32)	15 (28/96/23)	26 (22/94/17)	83 (11/91/9)

Support for **numeric attributes**:

race(X, white) :- combine(X, Y), It(79, Y). [Ricci] X is white if their combine score is greater than 79

• Missed by prior work because it incorrectly categorized *combine* into categories {<70, ≥70}

Relations with **multiple proxy attributes**:

race(X, white) :- native_country(X, usa), education(X, bsc). [Adult] X is white if they are from the US and have a bachelor's degree

• Combination of proxies native_country and education was previously unknown

Support for **numeric attributes**:

race(X, white) :- combine(X, Y), It(79, Y). [Ricci] X is white if their combine score is greater than 79

• Missed by prior work because it incorrectly categorized *combine* into categories {<70, ≥70}

Relations with **multiple proxy attributes**:

race(X, white) :- native_country(X, usa), education(X, bsc). [Adult] X is white if they are from the US and have a bachelor's degree

• Combination of proxies native_country and education was previously unknown

Support for **numeric attributes**:

race(X, white) :- combine(X, Y), lt(79, Y). [Ricci] X is white if their combine score is greater than 79

• Missed by prior work because it incorrectly categorized *combine* into categories {<70, ≥70}

Relations with **multiple proxy attributes**:

race(X, white) :- native_country(X, usa), education(X, bsc). [Adult] X is white if they are from the US and have a bachelor's degree

• Combination of proxies native_country and education was previously unknown

Proxy Attribute Discovery in Machine Learning Datasets via Inductive Logic Programming

- ML datasets often suffer from indirect discrimination via **proxy attributes**
- Proposed **PADTAI**, a new tool for proxy attribute discovery based on **ILP**
- Evaluated on 10 real-world datasets and detected 83 proxy relations corresponding to 49 potential proxy attributes
- PADTAI is open-source and available online

Link to PADTAI