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Abstract. The issue of fairness is a well-known challenge in Machine
Learning (ML) that has gained increased importance with the emergence
of Large Language Models (LLMs) and generative Al. Algorithmic bias
can manifest during the training of ML models due to the presence of
sensitive attributes, such as gender or racial identity. One approach to
mitigate bias is to avoid making decisions based on these protected at-
tributes. However, indirect discrimination can still occur if sensitive in-
formation is inferred from proxy attributes. To prevent this, there is a
growing interest in detecting potential proxy attributes before training
ML models. In this case study, we report on the use of Inductive Logic
Programming (ILP) to discover proxy attributes in training datasets,
with a focus on the ML classification problem. While ILP has estab-
lished applications in program synthesis and data curation, we demon-
strate that it can also advance the state of the art in proxy attribute
discovery by removing the need for prior domain knowledge. Our evalu-
ation shows that this approach is effective at detecting potential sources
of indirect discrimination, having successfully identified proxy attributes
in several well-known datasets used in fairness-awareness studies.

Keywords: Fairness, Machine Learning, Proxy Attributes, Inductive
Logic Programming.

1 Introduction

Recent years have seen a dramatic rise in the popularity of Artificial Intelli-
gence (AI) and Machine Learning (ML). ML algorithms are now deeply inte-
grated into our daily lives, playing critical roles in tasks ranging from loan ap-
proval [44] to recidivism prediction [47]. While this shift towards machine-guided
decision-making has streamlined processes that were once labor-intensive, it has
also raised significant concerns about the potential for discriminatory behavior
in Al For example, some ML models have exhibited biases based on gender [15]
or racial identity [3], underscoring the need for fair ML.

A common strategy to ensure fairness in ML models is to prevent them
from relying on sensitive information during the learning process [39]. This ap-
proach distinguishes between two types of attributes in training datasets: pro-
tected and non-protected [7,16,24,25]. Protected attributes are potential sources
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ID || Marital | Country Sex
1 husband usa male
2 wife usa female
3 husband uk male
4 single uk female
) single usa male

Table 1. Example dataset with non-protected attributes Marital and Country, and
protected attribute Sex. The non-protected attribute Marital is a proxy of Sex (when
Marital = husband or Marital = wife).

of direct discrimination (e.g., gender and race), and should not be used as deci-
sion points [31]. However, indirect discrimination may still occur if some of the
non-protected attributes leak information about the protected ones. For exam-
ple, evidence suggests that an individual’s race can, in some cases, be inferred
from their ZIP code [17]. As a result, a model using the non-protected attribute
ZIP Code as a decision point might still exhibit racial bias, even if it does not
directly use the protected attribute Race. Hence, we say that ZIP Code is a
prozy attribute [51] of Race, since the latter can be inferred from the former.

Proxy Attributes. A proxy attribute is an attribute that has a causal effect
on some other attribute [40,51]. In other words, proxy attributes allow us to at
least partially derive the values of another attribute, as seen with ZIP Code
and Race. While these attributes can be either protected or non-protected, we
generally use the term proxy attribute to refer specifically to a non-protected
attribute that infers information about a protected one.

Consider the example shown in Table 1. The dataset has two non-protected
attributes, Marital and Country, and one protected attribute, Sex. For clarity,
the dataset also includes a column ID that uniquely identifies each row. Note
that this column is not actually part of the dataset and is neither a protected
nor a non-protected attribute.

In the example, Marital acts as a proxy attribute of Sex when it has value
husband or wife. Specifically, when Marital = husband, Sex has value male,
and when Marital = wife, Sex has value female. In other words, the attribute
Marital determines Sex, although the opposite does not necessarily hold (e.g.,
Sex = male does not determine the value of Marital). Furthermore, we cannot
infer the value of Sex when Marital = single, i.e., the relation between proxy
and protected attributes is only partially defined. This is a common occurrence
in real-world datasets, as we shall discuss later.

Proxy Attribute Discovery. This case study reports on the use of Inductive
Logic Programming (ILP) [14,19,37,48] to identify proxy attributes in ML train-
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Approach II\I{(I)lc])zvolfar:jlagiZ Partiality | Noise | Arithmetic | Expressivity
ILP v v v v v
Causal Graphs X v v X7 X
Program Synthesis v X v v 4

Table 2. Comparison between different approaches for proxy attribute discovery: ILP,
causal graphs and program synthesis. While some causal approaches may support
arithmetic’, they require substantial user effort to do so, as opposed to the other two.

ing datasets. The quality of an algorithm for proxy attribute discovery can be
evaluated based on the following five criteria:

1. Dependence on domain knowledge: the degree to which the algorithm
relies on user-provided domain knowledge to detect proxy attributes.

2. Support for partial proxy attributes: the ability to support proxy rela-
tions that are only partially defined (e.g., the Marital proxy in Table 1).

3. Support for noisy data: the ability to handle conflicts, such as rows with
similar proxy attributes having different protected attributes.

4. Support for arithmetic relations: the ability to infer arithmetic relations
beyond simple equalities, such as order relations (e.g., less-than, greater-than
relations) or arithmetic operations (e.g., addition, multiplication).

5. Expressivity of the output: the extent to which the algorithm’s output
provides insight into the proxy attributes, i.e., whether it simply identifies
them or explicitly describes the proxy relation.

Table 2 shows a comparison between three different approaches for proxy
attribute discovery: ILP, causal graphs and program synthesis. Causal graphs
are directed acyclic graphs where nodes represent attributes and edges capture
the relations between them. While causal approaches are the most popular in
prior work [31,35,39], they are limited by their dependence on the availability
of domain knowledge, such as the need for user-provided causal graphs [31,35]
or the categorization of numeric attributes [39]. Furthermore, their output is
not expressive, and while some causal approaches support arithmetic [39], they
require extensive manual preprocessing to do so.

In contrast, program synthesis techniques [41,46,52], although not yet ap-
plied in this domain, offer a promising alternative for proxy attribute discovery.
Following such an approach, a synthesis tool would try to derive a function that
computes protected attributes from proxy attributes. However, these techniques
offer no native support for partial proxy attributes, as existing table-based syn-
thesis methods mostly focus on fully defined operations, such as SQL queries or
table transformations [41]. ILP, on the other hand, follows a rule-based synthesis
approach, which offers native support for partiality in the inferred relations.

Contributions. The main contribution of this case study is a new methodology
for proxy attribute discovery based on ILP (§4), which we have implemented as
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a Python tool, PADTAI, available online [22]. We have applied this tool to 10
real-world datasets, and detected up to 83 proxy relations, corresponding to 49
potential proxy attributes, in 8 of those (§5). Our evaluation shows that ILP is
an effective technique for proxy attribute discovery, and compares favorably to
more traditional causal approaches.

2 Related Work

Fairness. Al fairness has emerged as an increasingly critical research area in re-
cent years [1,2,5,10,20,29,53]. Despite this, there is still no general consensus on
how to define and evaluate fairness in Al systems [51]. In the context of the Ma-
chine Learning classification problem, which this case study focuses on, Verma
and Rubin [51] identify three main categories of fairness definitions: (i) statis-
tical measures [4,9,11,18,26,32]; (ii) similarity-based measures [18,21,35], which
are grounded in the principle that similar individuals should have similar clas-
sifications; and (iii) causal reasoning [31,35,39,45], which bases its definition of
fairness on the causal relations between attributes.

Most fairness definitions in ML algorithms differentiate between protected
and non-protected attributes. Protected attributes are sensitive features for
which non-discriminatory behaviour should be established (e.g., race, religion, or
gender). Much of the research on algorithmic fairness actively attempts to find
biases against these attributes with respect to various fairness metrics [18,35,50].
Other approaches employ more complex methods; for instance, Ignatiev et al. [30]
exploit formal reasoning techniques to rigorously analyze and build fair ML, mod-
els. However, to the best of our knowledge, we are the first to apply ILP to
identify potential sources of discrimination.

Proxy Attributes. Indirect discrimination arising from proxy attributes has
been studied using causal approaches [31,35]. These approaches assume that the
classification problem and training dataset are accompanied by a causal graph
that models the domain; for instance, Kusner et al. [35] use a causal graph to
model the relations between grades (e.g., LSAT, GPA and FYA) and race and
gender in the Lawschool dataset [54]. However, causal graphs of a specific domain
are often hard to find, especially in the social contexts where fairness is most
relevant, making causal methods largely inaccessible to non-experts.

A notable exception is the work of Le Quy et al. [39], who circumvent the need
for predefined causal graphs. Instead, the authors learn Bayesian networks [28]
directly from datasets by approaching the task as an optimization problem.
While this method reduces the need for domain knowledge compared to pre-
vious approaches [31,35], it still requires user input to categorize numeric at-
tributes and handle arithmetic relations. In contrast, our ILP-based approach
supports both categorical and numeric attributes natively and requires minimal
user input.
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Day Temperature | Humid || Rain
sunday cold yes yes
monday hot yes no
tuesday cold no no
wednesday hot no no

Table 3. Example dataset for an ILP task.

3 Background: Inductive Logic Programming

Inductive Logic Programming (ILP) [14,19,37,48] is a form of Machine Learning
that relies on logic programs to learn models. As with other forms of ML, ILP
tries to induce a hypothesis from a set of training examples. However, unlike
most forms of ML, where data is given in tabular format, ILP is rule-based, i.e.,
it encodes both the data and the learned model as a set of logical rules. As
a result, ILP learns relations between attributes, whereas most other methods
learn functions. Consider, for instance, a classification problem whose goal is to
predict the correct label of a given input. In this case, a typical ML model learns
a complex function that transforms a vector of attributes into a prediction. In
contrast, ILP learns a logical program that relates attributes to labels.

Suppose we want to predict if it is going to rain. We are given a dataset with
meteorological data about the first four days of the week, and whether it rained
or not (Table 3). This is a classification problem: given a set of examples, our
goal is to induce a hypothesis that generalizes and correctly predicts the target
label Rain. However, ILP does not rely on table-based learning; instead, the
input table must be encoded as a set of logical rules. In general, an ILP system
takes three sets as input: B, ET and E~. The set B is the background knowledge,
which serves a similar purpose to features in traditional ML approaches. The sets
Et and E~ are the positive and negative examples respectively. In our case, we
build these sets as follows:

( cold(sunday). ) N '
cold(tuesday). Et = { rain(sunday). }
B =4 hot(monday). 3 rain(monday).
hot(@ednesday). E~— = rain(tuesday).
hum%d(sunday) ' rain(wednesday).
| humid(monday). |

Note that these sets essentially translate Table 3 into a logical program: the
background knowledge represents the features, while the examples represent the
target labels. Given this input, an ILP system will try to find a hypothesis that
covers as many positive examples and as few negative examples as possible. In
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1 pm(m). pf(f).
2 ph(h). pw(w). ps(s). r DP
pusa(usa). puk(uk).

w

4 pmarital(1l,h). pcountry(l,usa). 1 pos(psex(1,m)).
5 pmarital(2,w). pcountry(2,usa). 2 pos(psex(2,f)).
¢ pmarital(3,h). pcountry(3,uk). [ CR 3 pos(psex(3,m)).
7 pmarital(4,s). pcountry(4,uk). 4 pos(psex(4,f)).
s pmarital(5,s). pcountry(5,usa). | 5 pos(psex(5,m)).

(a) (b)

Fig. 1. Encoding the dataset from Table 1 in Popper: (a) background knowledge: de-
cision points (DP) and column relations (CR), and (b) examples.

our case, for instance, the system might induce the hypothesis that it rains if it
is cold and humid. Put formally:

H = { rain(A) :- cold(A), humid(A). }

where rain(A) is called the head of the rule and cold(A), humid(A) the body.

While ILP tools may differ in their specific features, the underlying princi-
ples remain largely the same. For this reason, much of our procedure for proxy
attribute discovery easily translates to various systems. To ground our discus-
sion, we will follow the syntax of Popper [14], a state-of-the-art ILP system.
We elaborate on our rationale for choosing Popper in §5. Popper expects three
files as input: (i) a bias file with syntactic and semantic information to restrict
the search space; (ii) a background knowledge file containing predicates that the
system may use in rule bodies; and (iii) an examples file with positive and/or
negative examples for testing the derived rules. The bias includes the types of
each column, which we infer automatically from the dataset, as well as the spec-
ifications (name and arity) of the predicates that represent them.

4 Proxy Attribute Discovery with ILP

In this section, we report on the use of ILP to discover proxy attributes in
training datasets for ML models. Here, our main point of concern is how to
model the detection of proxy attributes as an ILP problem. We discuss the basic
dataset encoding strategy (§4.1), preprocessing techniques (§4.2), the handling
of numeric attributes (§4.3), and the use of thresholds to filter the output (§4.4).

4.1 Basic Encoding

Our first priority is to establish a systematic procedure for encoding a simple ML
dataset as valid input for our target ILP system. As an example, we revisit the
dataset from Table 1. Recall that this dataset has two non-protected attributes,
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Marital and Country, a protected attribute Sex, and that Marital is a proxy
attribute of Sex when Marital = husband or Marital = wife. Informally, our
goal is to encode each attribute as a logical relation, allowing the ILP system to
derive rules that associate the protected attribute with the proxy attribute. Fig. 1
gives an abridged view of the encoding. Note that the background knowledge
encodes the non-protected columns and the values appearing in the dataset
(called decision points), while the examples encode the protected column.

Let us then formalize the encoding process. In a nutshell, we aim to define
an encoding function £(7T") that takes as input a dataset 7" and encodes it as an
ILP program. We can formally define a dataset 1" as:

n
T= Z (pi7 ti)

i=1
Here, a dataset is described as a sum of n rows (p;,t;), where p; is a tuple
of non-protected attributes and t; the protected attribute for some row 7. For
example, the first row of Table 1 is defined as ((husband, usa), male). Note that
the column ID is not encoded, as it is neither a protected nor a non-protected
attribute. In general, a dataset may have any number of protected attributes;
however, for modeling purposes, we assume that each dataset has only one. We
can easily transform a dataset with k& protected attributes into k datasets with a
single protected attribute by simply isolating each protected attribute at a time.

Given a dataset T', we define its encoding, £(T), as:

E(T) = U U (V) (Decision Points)
c€ ColsU {t} v e Vals(c)

U (U U pc(i,pi(c))> (Column Relations)

i=1 c€ Cols
U ( U pos(pt(i,ti))> (Examples)
i=1

where p,. is constructed by appending the value of x to the character p (e.g., if
x = m, then p, = pm). The intuition behind this encoding is more involved. We
explain each component of the sum individually:

— Decision Points: We encode a value v as a decision point p,(v). Values
encompass both the non-protected and protected attributes present in T.
For example, the protected attribute male (shortened to m for the sake of
simplicity) is encoded as pm(m) (cf. Fig. 1a, line 1).

— Column Relations: We encode a non-protected entry p;(c), representing
the value of column ¢ in some row i, as a column relation p.(i, p;(c)). Intu-
itively, pi(c) isolates the value of the non-protected column c¢ in the tuple
of non-protected attributes p;. For example, the non-protected entry usa in
row 1 is encoded as pcountry(1,usa) (cf. Fig. 1a, line 4).
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ID || Marital Race
1 husband black
2 wife white
3 husband white
4 single hispanic ID || Marital || Race
) single white 1 husband || black
6 husband black 2 wife white

(a) (b)

Table 4. Example dataset with non-protected attribute Marital, and protected at-
tribute Race: (a) before, and (b) after removing conflicts.

— Examples: We encode a protected entry t;, representing the value of the
target label ¢ in some row ¢, as an example pos(p:(i,t;)). The meta-predicate
pos is a Popper builtin and simply states that the example is positive (i.e.,
that the relation p:(i,t;) is true). For example, the protected entry male
(shortened to m) in row 1 is encoded as pos(psex(1,m)) (cf. Fig. 1b, line 1).

In the current example, given the encoding shown in Fig. 1, an ILP system
would learn the rules sex(X,Y) :- pmarital(X, Z), ph(Z), pm(Y'), corresponding
to the case Marital = husband, and sex(X,Y) :- pmarital(X, Z), pw(Z), pf(Y),
corresponding to the case Marital = wi fe.

4.2 Preprocessing Techniques

Although the basic encoding strategy described in §4.1 is effective for small
synthetic datasets (e.g., Table 1), it often falls short when applied in the wild.
To address this, we discuss the application of preprocessing techniques, focusing
on two key issues: conflicts between rows, which we solve via majority voting,
and size limitations, which we mitigate through sampling.

Removing Conflicts. A conflict between two or more rows occurs when all
their non-protected attributes are identical but the protected attribute differs.
Put formally, two rows ¢,j are conflicting if p; = p; but ¢; # t;. This is a
common issue in real-world datasets; an example of how it might happen is
given in Table 4a. The dataset has two sets of conflicts: rows 1, 3 and 6, and
rows 4 and 5. While a human can easily recognize that this example is not
incorrect, many ILP systems interpret such conflicts as errors and struggle to
produce meaningful output. Popper, for instance, often fails to discover relevant
relations in datasets with conflicts, as it cannot find a set of rules that accurately
predicts the protected attribute across all conflicting rows.
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ID || Score Race
1 80 white
2 74 hispanic
3 83 white
4 72 white
5) 75 black

Table 5. Example dataset with non-protected attribute Score, and protected attribute
Race. The non-protected attribute Score is a proxy of Race (when Score > 75).

To remove conflicts, our tool implements a straightforward majority voting
system. Given a set of conflicting rows, the system proceeds as follows: if any
protected attribute holds a relative majority, it keeps a single row with that
attribute; otherwise, it discards all rows. Applying these principles to Table 4a,
the tool produces the dataset shown in Table 4b. In the example, the protected
attribute Race = black holds a relative majority in rows 1, 3 and 6; hence, the
preprocessed dataset keeps row 1. In contrast, no protected attribute holds a
relative majority in rows 4 and 5, which are discarded. Since this approach may
occasionally introduce false positives (e.g., Marital acting as a proxy of Race
in Table 4b), rules inferred from the preprocessed dataset must be validated
against the original dataset (cf. §4.4).

Sampling. Real-world datasets often have tens or even hundreds of thousands
of rows. Applying our methodology directly to such datasets would result in
extremely large ILP tasks. For instance, a dataset containing 10 non-protected
attributes and 20 000 rows would produce 10 x 20 000 = 200 000 column rela-
tions. This poses a significant challenge to our approach, as even state-of-the-art
ILP systems cannot efficiently handle inputs of that size.

To address this, our tool samples a random subset of rows from the dataset
and applies the ILP procedure exclusively to this sample. The default sample
size varies with the size of the dataset, and should balance performance and
representativeness. Once the procedure terminates, the tool validates the rules
inferred from the sampled rows against the entire dataset, accepting only those
that perform well across all rows (cf. §4.4).

4.3 Numeric Attributes

Consider the example shown in Table 5. The dataset has one non-protected
attribute, Score, and one protected attribute, Race. Here, Score acts as a
proxy attribute of Race; specifically, when Score > 75, Race has value white.
This relation cannot be discovered with our basic encoding methodology, which
only supports equality-based reasoning for numeric attributes. However, as in
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1 pw(w). ph(h). pb(b).
2 p72(72). p74(74). p75(75). r DP
3 p80(80). p83(83).

4 pscore(1,80). pscore(2,74).

J
N

5 pscore(3,83). pscore(4,72). » CR

¢ pscore(5,75). ) 1 pos(prace(1,w)).
7 1t(72,74). 1t(72,75). 1t(72,80). ) 2 pos(prace(2,h)).
g 1t(72,83). 1t(74,75). 1t(74,80). 3 pos(prace(3,w)).
o 1t(74,83). 1t(75,80). (PR | pos(prace(4,w)).
10 1t(75,83). 1t(80,83). 5 pos(prace(5,b)).

(a) (b)
Fig. 2. Encoding the dataset from Table 5 in Popper: (a) background knowledge: deci-
sion points (DP), column relations (CR) and pair relations (PR), and (b) examples.

this example, some datasets (e.g., the Ricci dataset [49]) contain proxy relations
that can only be expressed through arithmetic relations beyond simple equalities.

In the context of ILP, one possible technique for reasoning about these re-
lations is to explicitly encode them on the numeric values that appear in the
sampled rows. For example, in Table 5, we can encode the underlying order
relation using the less-than operator in tandem with the equality. Fig. 2 gives
an abridged view of the application of this technique. The general structure is
similar to that of Fig. 1, with the key difference being the inclusion of the less-
than relations between integer values in the background knowledge. Note that
the encoding of these relations is grounded, i.e., it is explicitly defined for all
relevant integer pairs rather than being expressed as a mathematical rule. While
this has an impact on the size of the background knowledge file, it improves the
performance of the ILP procedure by pruning the search space [13].

As before, we can formalize the encoding process for some dataset T. To
account for arithmetic relations, our implementation is parametric on a set of
relations to be grounded. For simplicity, however, we focus the formalism solely
on the less-than operator. Hence, given a dataset T', we define its parameterized
encoding, &(T), as:

E(T) = E(T) (Basic Encoding)

U U U It(i,7) (Pair Relations)

c€ ColsU {t} 1<g
i, J € Ints(c)

Here, the less-than operator is encoded as a set of pair relations [t(i, j) repre-
senting its grounding for all integers appearing in the sampled rows. Note that
to parameterize £(T") on other relations, one needs only modify the extended
encoding. For instance, addition can be modeled by changing the inner union to
Ui je Tnts(c) sum(i, j,© + j). By default, we encode only the less-than relation.
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ID || Marital Sex
1 husband || male (TP
2 wife female (TN
3 husband || female (FP)
4 )

wife male (F

)
)

Z

Table 6. Measuring TP/TN/FP/FN for the rule sex(X, male) :- marital(X, husband).

In the current example, given the encoding shown in Fig. 2, an ILP system
would learn the rule race(X,Y) :- pscore(X, Z), 1t(75,7), pw(Y).

4.4 Thresholds

Identifying proxy attributes often requires a degree of flexibility in determining
what qualifies as a proxy. For example, in Table 1, Marital acts as a proxy of
Sex only when Marital = husband or Marital = wife, which will be reflected in
the rules found by the ILP procedure. In general, it is acceptable for the inferred
rules not to cover certain rows. Conversely, some rows may be misclassified due
to noise or because the protected attribute is only strongly correlated with the
proxy rather than directly implied by it. Therefore, rules must be evaluated
against a set of criteria that allows for some leniency while still ensuring that
overly specific or highly inaccurate rules are filtered out.

Metrics. For a given rule, we measure the number of rows where: (i) the proxy
and protected attributes match the body and head of the rule, respectively (TP);
(ii) neither the proxy nor the protected attributes match the body and head of
the rule (TIN); (iii) the proxy attributes match the body of the rule but the
protected attribute does not match the head (FP); and (iv) the proxy attributes
do not match the body of the rule but the protected attribute matches the
head (FN). As an example, consider Table 6, which illustrates these concepts
for the rule sex(X, male) :- marital(X, husband), written in simplified notation
for clarity. We base our filtering criteria on three metrics: recall (R), precision
(P) and coverage (C'), defined in the standard way:

TP TP TP

= — P:— =
k TP + FN TP + FP ¢ TP + TN + FP + FN

Informally, recall ensures that rules are broad enough to filter out overly specific
relations, precision that rules maintain a high level of accuracy, and coverage
that rules apply to a statistically significant portion of the dataset. An attribute
qualifies as a proxy only if there exists a rule pertaining to it that meets specific
thresholds: by default, rules should be comprehensive (above 15% recall and 10%
coverage) and highly accurate (above 85% precision). The choice of thresholds is
critical in determining which proxies are found; we discuss them further in §5.3.
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System Open Source | Maintained | Documented | Noise | Arithmetic
Popper [14] v v v v v
Aleph [48] v X v v 4
Metagol [43] v X v X v
ILASP [38] X 4 v v v

Table 7. Comparison between different ILP tools: Popper, Aleph, Metagol and ILASP.

5 Evaluation

To evaluate our approach, we developed a Python tool based on the method-
ology outlined in §4, with Popper [14] as its underlying ILP system. Our tool,
PADTALI, is open-source and available online [22]. We have applied PADTALI to
10 real-world datasets, and detected up to 83 proxy relations, corresponding to
49 potential proxy attributes, in 8 of those. Here, we give an overview of our
choice of ILP system and datasets (§5.1), report on the results (§5.2) and discuss
the strengths and limitations of our approach (§5.3).

5.1 Experimental Setup

System Selection. To determine the most suitable ILP system for our tool’s
backend, we define five criteria: (i) open-source availability; (ii) active mainte-
nance; (iii) quality and comprehensiveness of documentation; (iv) support for
noise; and (v) support for arithmetic relations. Despite the wide array of avail-
able ILP systems, we narrow our focus to four that best fit our task: Popper [14],
which we discussed previously; Aleph [48], a longstanding and widely-used sys-
tem; and two modern ILP tools, Metagol [43] and ILASP [38].

Table 7 gives an abridged comparison of the evaluated systems. With the
exception of Metagol, all tools offer support for both noise and arithmetic rela-
tions, and are well-documented. However, both Aleph and Metagol are no longer
maintained, while ILASP, despite being actively maintained, is not open-source.
Popper, on the other hand, meets all our criteria and is easy to use, making it
the ideal choice for our experiments.

Datasets. We evaluate our approach against 10 real-world datasets with well-
known sources of indirect discrimination [39]:

e The Adult dataset [33], which consists of US census data, and whose goal is
to predict whether a person’s annual income exceeds US$50 000. The dataset
has three protected attributes: race, sex and age. We expect to find two proxy
relations: between relationship and sexr, and between education and race.

e The KDD dataset [8], which contains data from US population surveys,
and whose goal is also to predict whether a person’s annual income ex-
ceeds US$50 000. The dataset has two protected attributes: race and sex.
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We expect to find two proxy relations between detailed-household-summary-
in-household [ taz-filer-stat and sex /race.

e The German Credit dataset [27], which contains samples of bank account
holders and is used for credit risk assessment prediction. The dataset has
two protected attributes: age and foreign-worker. We expect to find a proxy
relation between housing and age.

e The Bank Marketing dataset [42], which contains data from marketing cam-
paigns of a Portuguese banking institution, and whose goal is to predict
whether a client will make a deposit subscription. The dataset has two pro-
tected attributes: age and marital. We expect to find a proxy relation be-
tween job and marital.

e The Credit Card dataset [55], which contains data of customers’ default pay-
ments in Taiwan and has been used for predicting future default situations.
The dataset has three protected attributes: education, marriage and sex. We
expect to find a proxy relation between age and marriage.

e The COMPAS dataset [3], which contains criminological data and has been
used for recidivism risk prediction. The dataset has two protected attributes:
race and sex. We expect to find two proxy relations: between score-text and
race, and between v-score-text and sex.

e The Ricci dataset [49], which contains data on promotion decisions within a
fire department, and whose goal is to predict whether an individual receives
a promotion based on their exam results. The dataset has one protected
attribute: race. We expect to find a proxy relation between oral and race.

e The Students dataset [12], which contains student data from two Portuguese
high schools, and whose goal is to predict students’ final year grades. The
dataset has two protected attributes: sex and age. We expect to find a proxy
relation between walc and sexz.

e The OULAD dataset [36], which contains information about students and
their activities in virtual learning environments, and whose goal is to predict
the success of a student. The dataset has one protected attribute: gender.
We expect to find a proxy relation between code-module and gender.

e The Lawschool dataset [54], which contains US law school admission records
from 1991, and whose goal is to predict if a candidate will pass the bar exam.
The dataset has two protected attributes: gender and race. We expect to find
two proxy relations between Isat/ugpa and gender/race.

A summary of the tested datasets and experimental results is given in [23,
Appendices A and C|. For a more comprehensive discussion, see [39].

Establishing the Baseline. In the literature, there is no ground-truth list of proxy
relations for the evaluated datasets. To establish our baseline of expected proxy
relations, we began by analyzing the Bayesian networks given in [39], enumer-
ating all non-protected attributes that were directly connected to protected at-
tributes by an edge. This analysis signaled 41 attributes as proxy candidates,
listed in [23, Appendix B|.

Of the 41 candidates, five belonged to the Lawschool dataset, which was pre-
viously studied in [35]. We cross-checked these five candidates against the causal
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relations identified in [35], leaving us with two validated proxy relations in this
dataset. For the remaining 36 candidates, we employed a random forest classi-
fier [6,34] to check whether the values of the corresponding protected attributes
could be inferred with a Gini impurity level of 0.01. This process yielded another
12 expected proxy relations in the nine analyzed datasets.

The resulting list comprises the 14 expected proxy relations given above, and
serves as a benchmark for comparison with our approach. While the list is not
exhaustive, and, in fact, our methodology uncovered proxy relations beyond this
baseline (cf. §5.2), it provides a point of reference for our experiments.

Experimental Setup. All tests were executed on a Ubuntu machine (22.04.4
LTS) with an Intel Core i5-8250U CPU and 8GB of RAM, using Popper 4.2.01
and SWI-Prolog 9.2.5. The datasets were preprocessed to remove the target
labels and isolate each protected attribute individually. Each experiment was
performed three times, with a maximum timeout of 20 minutes (1200 seconds)
per run. The results were obtained by taking the union of all discovered rules
from the three runs.

5.2 Results

We tested each dataset for potential proxy attributes with varying thresholds
for recall, precision, and coverage. Table 8 shows the number of detected proxy
relations under different threshold settings, ranging from strict (20/90/15) to
permissive (5/80/2.5). The number of expected proxy relations is indicated next
to each dataset. Additionally, we provide the average recall, precision, and cov-
erage values for the detected relations under each threshold setting, along with
the total number of detected relations. For example, in the Adult dataset, we
identified 3 rules that meet the default thresholds (15/85/10), with an average
recall, precision, and coverage of 32/95/23.

We detected the expected proxy relations in nearly all cases, except for the
Bank Marketing and COMPAS datasets. In both instances, the relevant proxy
relations were identified, but did not meet our minimum thresholds and were
therefore discarded. The remaining proxy relations were detected at varying
threshold settings depending on the dataset. For example, in the Adult dataset,
we detected the relationship proxy at the highest thresholds (20/90/15), while in
the Credit Card dataset, we only detected the age proxy at the lowest (5/80/2.5).

We also identified several proxy relations that have not been previously dis-
cussed in the literature. For instance, in the Ricci dataset, we detected a relation
between combine and race: race(X, white) :- combine(X,Y),1t(79,Y), written in
simplified notation for clarity, with recall, precision, and coverage of 25/94/14.
Informally, this rule states that an individual is white if their combine score is
greater than 79. Notably, Le Quy et al. [39] overlook this relation because they
categorize combine into two groups, {< 70, > 70}, failing to identify the correct
splitting point for this attribute.

! Available at https://github.com/logic-and-learning-lab/Popper/releases/v4.2.0.
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Recall / Precision / Coverage (%)

Dataset

20/90/15 | 15/85/10 | 10/80/5 | 5/80/2.5
Adult (2) 1 (61/100/41) | 3 (32/95/23) 6 (22/93/16) | 27 (10/91/8)
KDD (2) — 1 (38/87/18) 2 (25/83/12) 14 (9/86/6)

German Credit (1)

6 (32/98/31)

10 (26/98/25)

13 (23/98/21)

17 (19/97/18)

Bank Marketing (1)

Credit Card (1) — — — 1 (8/83/4)
COMPAS (2) - - - -
Ricei (1) — 1 (25/94/14) 2 (27/97/11) 5 (17/95/6)
Students (1) — — 3 (11/82/6) 13 (7/87/4)
OULAD (1) — — — 2 (5/90/3)
Lawschool (2) — — — 4 (7/87/6)
Total (14) 7 (36/98/32) | 15 (28/96/23) | 26 (22/94/17) | 83 (11/91/9)

Table 8. Number of detected proxy relations per dataset with varying thresholds,
along with the average recall, precision, and coverage for the identified relations. The
number beside each dataset indicates the number of proxy relations we expected to
find. Results for the default approach are highlighted in bold.

In addition, we identified proxy relations involving multiple proxy attributes.
In the Adult dataset, we found a relation between native-country/education
and race: race(X,white) :- native-country (X, usa), education(X, bsc), with re-
call, precision, and coverage of 16/92/14. Informally, this rule states that an
individual is white if they have a bachelor’s degree and are from the US. While
prior work [39] found causal relations between native-country, education, and
race, their combination in a single proxy relation was previously unknown. In
contrast, our approach explicitly identifies the proxy relation.

Finally, Table 9 shows the maximum recall, precision, and coverage values
found in the proxy relations detected for each dataset. The corresponding values
for the other metrics are provided in parentheses. For example, in the Credit
Card dataset, the maximum detected recall was 7.65%, with the correspond-
ing rule having 83% precision and 4% coverage. Note that these values may
fall below the minimum thresholds, resulting in their exclusion from Table 8
(e.g., in the Bank Marketing and COMPAS datasets). Furthermore, notice that
while the maximum precision is consistently high, it often comes from rules with
low recall/coverage. On the other hand, the maximum recall and coverage vary
across datasets, and in some cases even fail to meet the thresholds, despite being
typically associated with high precision rules.

5.3 Discussion

The results demonstrate that ILP is an effective technique for proxy attribute
discovery, having successfully identified most of the proxy attributes discussed
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Max. Rec. (%)

Max. Prec. (%)

Max. Cov. (%)

Adult

61.15 (100P/41C)

99.99 (61R/41C)

41.27 (61R/100P)

KDD

37.58 (87P/18C)

99.65 (1R/1C)

18.00 (38R /87P)

German Credit

48.39 (98P /47C)

100.00 (9r/9C)

46.60 (48R/98P)

Bank Marketing

6.86 (94P/2C)

100.00 (or/0C)

1.94 (7R /94P)

Credit Card

7.65 (83P/4C)

100.00 (oRr/0C)

4.07 (8R/83P)

COMPAS 4.64 (90P/4C) 100.00 (or/0C) 3.75 (5R/90P)

Ricct 29.63 (100P/7C) 100.00 (30r/7C) 14.41 (25R/94P)
Students 11.54 (73P/6C) 100.00 (6r/30C) 6.16 (10R/83P)
OULAD 5.37 (82P/20C) 91.28 (4Rr/2C) 2.88 (5R/91P)
Lawschool 9.12 (86P/8C) 100.00 (oRr/0C) 7.67 (9R/86P)

Table 9. Maximum recall (R), precision (P), and coverage (C) values per dataset.
The corresponding values of the other metrics are shown in parentheses.

in the literature, as well as some that were previously unknown. This discussion
highlights the strengths and limitations of our approach, and how it compares
to more traditional causal methods.

Thresholds. The modeling choice that most affects our approach is threshold
selection. Stricter thresholds lead to lower detection rates, but have a higher
likelihood of detecting true proxy attributes. In turn, more permissive thresholds
boost detection rates, but at the risk of introducing false positives. There are no
universally optimal thresholds; the appropriate choice depends on the specific
dataset under analysis. For instance, in the Credit Card dataset, we only identify
the age proxy at the lowest threshold settings, while in the German Credit
dataset, nearly every attribute is flagged as a proxy under similar conditions.

In general, we have found that the limiting factors in our approach are typ-
ically recall and coverage, rather than precision. This is in line with the results
from Tables 8 and 9: while the average recall /coverage tends to drop significantly
when we lower the thresholds, the average precision tends to remain constant.
Our sensitivity to these metrics can be attributed to two main factors. First,
as we have already discussed, the choice of thresholds impacts which rules are
discarded and which are not. Second, ILP systems prioritize inferring general
rules over highly specific ones. This means that if a proxy relation has a very
low coverage (e.g., under 1%), the dataset sample fed into the ILP system may
contain too few instances where the rule applies. In such cases, the system will
discard the rule, as it is not general enough to induce [13].

Sampling. The use of sampling in the ILP procedure introduces a degree of non-
determinism into our methodology. While high recall/coverage rules are consis-
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tently detected across different runs, low recall/coverage rules may be overlooked
if not enough relevant rows are sampled. We have observed this non-determinism
in practice, which is why we ran each experiment multiple times.

Comparison with Causal Methods. The impact of the different metrics
varies significantly depending on the discovery method used. Causal approaches
tend to be more sensitive to lower precision. For example, Le Quy et al. [39] fail to
discover the relation between marital-status and race in the Adult dataset, while
we detect it with a precision of approximately 87%. In contrast, our approach is
more sensitive to lower coverage, as evidenced by its failure to detect proxies in
the Bank Marketing and COMPAS datasets.

Another difference between the two methods lies in the handling of numeric
attributes. As mentioned earlier, Le Quy et al. [39] are able to detect proxy
relations involving arithmetic operations (e.g., in the Ricci dataset). However,
their approach relies on the categorization of numeric attributes, which requires
domain knowledge and user effort. As a result, if the user fails to choose the
appropriate categories, the system may miss relevant causal relations (e.g., the
combine proxy in the Ricci dataset). In contrast, our approach supports arith-
metic relations natively, and does not require any user-guided preprocessing.

Finally, the proxy relations we detect are directly interpretable and can be
easily validated. This stands in contrast to causal approaches, as shown by the re-
lation between native-country / education and race discussed earlier. While causal
methods may detect such proxy attributes [39], their output provides limited
insight into the underlying proxy relations. In contrast, our approach explicitly
identifies these relations, making them straightforward to interpret and validate.

6 Conclusions

Ensuring fairness in Machine Learning has become increasingly critical. While
efforts to reduce bias often focus on preventing direct discrimination arising from
sensitive attributes such as gender or race, ML models may still exhibit indirect
discrimination due to the presence of proxy attributes in training datasets.

In this case study, we reported on a methodology for proxy attribute discovery
based on Inductive Logic Programming, which we implemented as a Python
tool, PADTAI, available online [22]. We have applied this tool to 10 real-world
datasets, and detected up to 83 proxy relations, corresponding to 49 potential
proxy attributes, in 8 of those. Our evaluation shows that ILP is not only an
effective approach for proxy attribute discovery, but can also advance the state
of the art by removing the need for prior domain knowledge.
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