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Abstract

Knowledge refactoring compresses logic programs by replac-
ing them with new rules. Current approaches struggle to scale
to large programs. To overcome this limitation, we introduce
a constrained optimisation refactoring approach. Our first key
idea is to encode the problem with decision variables based
on literals rather than rules. Our second key idea is to focus
on linear invented rules. Our empirical results on multiple do-
mains show that our approach can refactor programs quicker
and with more compression than the previous state-of-the-art
approach, sometimes by 60%.

Code — https://github.com/minghao-liu/MaxRefactor

1 Introduction

Knowledge refactoring is a key component of human intelli-
gence (Rumelhart and Norman 1976). The goal is to com-
press a knowledge base, such as a logic program, by in-
troducing new rules and applying replacements. Knowledge
refactoring is also important in Al, such as for policy reuse
in planning (Bonet, Drexler, and Geffner 2024) and to im-
prove performance in program synthesis (Ellis et al. 2018;
Dumanci¢, Guns, and Cropper 2021).

To illustrate knowledge refactoring, consider the logic
program:

8(A) <= p(A), q(A,B), r(B), s(A,B)
8(A) <= p(A), q(A,B), r(B), {(A,B)
8(A) <= p(B), q(B,C), r(C), w(A,B)
8(A) <= p(A), q(B,A), r(A), z(A,B)

PL=

This program has 4 rules, each with 5 literals. Thus, the size
of this program is 20 (literals).
We could add a new aux; rule to refactor P; as:

aux1(A,B) < p(A), q(A,B), r(B)
g(A) < auxy(A,B), s(A,B)
Py = g(A) + auxy(A,B), {A,B)
g(A) < aux1(B,C), w(A,B)
8(A) < p(A), q(B,A), r(A), z(A,B)
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The size of P, is smaller than P; (18 vs 20 literals) yet syn-
tactically equivalent to P; after unfolding' (Tamaki and Sato
1984).

A limitation of current refactoring approaches is scalabil-
ity (Ellis et al. 2018; Cao et al. 2023; Bowers et al. 2023).
For instance, KNORF (Dumanci¢, Guns, and Cropper 2021)
frames the refactoring problem as a constrained optimisation
problem (COP) (Rossi, Van Beek, and Walsh 2006). KNORF
builds a set of invented rules by enumerating all subsets
of the rules in an input program. KNORF then uses a COP
solver to find a subset of the invented rules that maximally
compresses the input program. However, because it enumer-
ates all subsets, KNORF struggles to scale to programs with
large rules and to programs with many rules.

To overcome this scalability limitation, we introduce a
novel refactoring approach. Our first key contribution is a
new COP formulation. Instead of enumerating all subsets of
rules, we use decision variables to determine whether a lit-
eral is used in an invented rule. Our new formulation has
two key advantages. First, the number of decision variables
required is exponentially reduced. Second, an invented rule
can use any combination of literals in the input program,
rather than a strict subset of an input rule.

To illustrate the benefit of our first contribution, consider
the input program P; . The invented rule aux; cannot refactor
the last rule as any instance of aux; cannot cover the literals
p(A), g(B,A), r(A) simultaneously. However, we could invent
the rule auxs to refactor the program as:

auxs(A,B,C) < p(A), q(B,C), r(C)
g(A) < auxs(A,A,B), s(A,B)
Ps = g(A) < auxs(A,A,B), t(A,B)
g(A) < auxs(B,B,C), w(A,B)
g(A) < auxs(A,B,A), z(A,B)

The body of aux, is not a subset of any rule in Py, so KNORF
could not invent aux,. By contrast, because we allow an in-
vented rule to use any literal, we can invent auxs. The pro-
gram Ps is smaller than Py (16 vs 18 literals) yet is syn-
tactically equivalent to P; after unfolding. As this example
shows, our first contribution allows our approach to find bet-
ter (smaller) refactorings.

"Unfolding means replacing all aux; literals in the body with its
definition literals and eliminating aux; from the program. A formal
description is in Section 3.
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Our second key contribution is to use linear invented rules
input program.
8(A) <= p(A), q(A,B), q(B,C), r(C) }
rule auxs to refactor Q; as:
8(A) < aux3(A,A,A,B,A,B,B), s(A,B)
Qo
8(A) < aux3(A,A,B,A,BAA), z(A,B)

where (i) the body literals may not occur in the input pro-
gram, and (ii) the size may be larger than any rule in the
To illustrate this idea, consider the program:
8(A) <= p(A), p(B), q(A,B), r(B)

Although we can use aux; and auxs to refactor Q;, we can
find a smaller refactoring by introducing a linear invented

auxs3(A,B,C,D,E,EG) < p(A), p(B), q(C,D),

9(E,F), (G)

g(A) < auxs(A,A,A,B,A,B,B), t(A,B)

g(A) < auxs(B,B,B,C,B,C,C), w(A,B)

g(A) < auxs(A,B,A,B,A,B,B)

g(A) < auxs(A,AA,B,B,C,C)

Note that auxz contains body literals with different variables
(e.g.,q(E,F), r(G)) and more literals than any input rule. This
refactoring reduces the size from 30 (Q1) to 22 (Qs).

In a linear invented rule, the variables occur linearly in the
body literals. We prove (Theorem 2) that if a program can be
refactored using any invented rule then it can be refactored
to the same size (or smaller) using a linear invented rule.
This contribution allows our approach to find smaller refac-
torings.

1.1 Novelty and Contributions

The three main novelties of this paper are (i) the theoreti-

cal proof of the complexity of the optimal knowledge refac-

toring problem, (ii) a concise and efficient encoding of the

problem as a COP, and (iii) demonstrating the effectiveness

of our approach on large-scale and real-world benchmarks.
Overall, our contributions are:

* We introduce the optimal knowledge refactoring prob-
lem, where the goal is to compress a logic program by
inventing rules. We prove that the problem is A/P-hard.

We introduce MAXREFACTOR, which solves the opti-

mal knowledge refactoring problem by formulating it as
a COP.

We evaluate our approach on multiple benchmarks. Our
results show that, compared to the state-of-the-art ap-
proach, MAXREFACTOR can improve the compression
rate by 60%. Our results also show that MAXREFACTOR
scales well to large and real-world programs.

2 Related Work

Knowledge refactoring. Knowledge refactoring is impor-
tant in many areas of Al (Bonet, Drexler, and Geffner 2024),
notably in program synthesis (Ellis et al. 2018; Bowers et al.
2023; Cao et al. 2023; Hocquette, Dumancic, and Cropper
2024). For instance, Dumanci¢, Guns, and Cropper (2021)
show that learning from refactored knowledge can substan-
tially improve predictive accuracies of an inductive logic
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programming system and reduce learning times because the
knowledge is structured in a more reusable way and redun-
dant knowledge is removed.

Model reformulation. There is much research on refor-
mulating constraint satisfaction problem (CSP) models auto-
matically (O’Sullivan 2010; Charlier et al. 2017; Vo 2020).
The main categories include implied constraints genera-
tion (Charnley, Colton, and Miguel 2006; Bessiere, Coletta,
and Petit 2007), symmetry and dominance breaking (Lib-
erti 2012; Mears and de la Banda 2015), pre-computation
(Cadoli and Mancini 2006), and cross-modeling language
translation (Drake et al. 2002). We differ because we work
with logic programs and invent rules.

Redundancy and compression. Knowledge refactoring
is distinct from knowledge redundancy, which is useful
in many areas of Al, such as in Boolean Satisfiability
(Heule et al. 2015). For instance, Plotkin (1971) intro-
duced a method to remove logically redundant literals and
clauses from a logical theory. Similarly, theory compression
(De Raedt et al. 2008) approaches select a subset of clauses
such that performance is minimally affected with respect to
a cost function. We differ from redundancy elimination and
theory compression because we restructure knowledge by
inventing rules.

Predicate invention. We refactor a logic program by in-
troducing predicate symbols that do not appear in the in-
put program, which is known as predicate invention (Kramer
2020). Predicate invention is a major research topic in pro-
gram synthesis and inductive logic programming (Kok and
Domingos 2007; Muggleton, Lin, and Tamaddoni-Nezhad
2015; Hocquette and Muggleton 2020; Jain et al. 2021; Sil-
ver et al. 2023; Cerna and Cropper 2024). We contribute to
this topic by developing an efficient and scalable method to
invent predicate symbols to compress a logic program.

Program refactoring. In program synthesis, many re-
searchers (Ellis et al. 2018; Bowers et al. 2023; Cao et al.
2023) refactor functional programs by searching for lo-
cal changes (new \-expressions) that optimise a cost func-
tion. We differ from these approaches because we (i) con-
sider logic programs, (ii) use a declarative solving paradigm
(COP), and (iii) guarantee optimal refactoring. ALPS (Du-
manci¢ et al. 2019) compresses facts in a logic program,
whereas we compress rules.

KNORF. The most similar work is KNORF (Dumanci¢,
Guns, and Cropper 2021). Given a logic program P as in-
put, KNORF works as follows. For each rule » € P, KNORF
enumerates every subset s of r. For each subset s and for
each combination h of the variables in s, KNORF creates a
new rule aux,, . KNORF then creates a COP problem where
there is a decision variable for each aux,, . It also creates de-
cision variables to state whether a rule € P is refactored
using aux, . KNORF then uses a COP solver to find a subset
of the invented rules that leads to a refactoring with maxi-
mal compression. KNORF has many scalability issues. Fore-
most, it enumerates all subsets of all rules and thus strug-
gles to scale to programs with large rules and many rules.
Specifically, for a program with n rules and a maximum rule
size k, KNORF uses O(n2*) decision variables. By contrast,
our MAXREFACTOR approach does not enumerate all sub-



sets of rules. Instead, as we describe in Section 4, we define
a new rule aux; by creating decision variables to represent
whether any literal in P is in aux;. Besides, we create de-
cision variables to state whether a rule and a literal in P is
refactored using aux;. Since the number of invented rules is
a predefined constant, MAXREFACTOR only needs O(nk)
decision variables. Finally, we propose the refactoring us-
ing linear invented rules, which can expand the space for in-
vented rules, enabling MAXREFACTOR to find better refac-
torings than KNORF.

3 Problem Setting

We focus on refactoring knowledge in the form of a logic
program, specifically a definite logic program with the least
Herbrand model semantics (Lloyd 2012). For simplicity, we
use the term logic program to refer to a definite logic pro-
gram. We assume familiarity with logic programming but
restate some key terms. A logic program is a set of rules of
the form:

h+ ay,aq,...

7am

where h is the head literal and a4, ..., a,, are the body lit-
erals. A literal is a predicate symbol with one or more vari-
ables. For example, parent(A,B) is a literal with the predi-
cate symbol parent and two variables A and B. The predi-
cate symbol of a literal a is denoted as pred(a) and the set
of its variables is denoted as var(a). The head literal of a
rule is true if and only if all the body literals are true. The
head literal of a rule r is denoted as head(r) and the set of
body literals is denoted as body(r). The size of a rule r is
defined as size(r) = |body(r)| 4+ 1, which is the total num-
ber of literals. The size of a logic program P is defined as

size(P) = >, cp size(r).

3.1 Knowledge Refactoring

Our goal is to reduce the size of a logic program whilst
preserving its semantics. However, checking the seman-
tic equivalence between two logic programs is undecidable
(Shmueli 1987). Therefore, we focus on finding syntacti-
cally equivalent refactorings. Syntactic equivalence implies
semantic equivalence but the reverse is not necessarily true.

We check syntactic equivalence by unfolding (Tamaki and
Sato 1984) refactored programs. Unfolding is a transforma-
tion in logic programming. We adapt the unfolding defini-
tion of Nienhuys-Cheng and Wolf (1997) to (i) resolve mul-
tiple literals, whereas the original definition only resolves
one literal each time, and (ii) prohibit variables that only ap-
pear in the body of a rule’:

Definition 1 (Rule unfolding). Given a logic program
P = {ci,¢2,...,cn} and a rule r, where r does not
have variables that only appear in its body, then unfold-
ing P upon r means constructing the logic program Q =
{di,da,...,dn}, where each d; is the resolvent of ¢; and r
if head(r) is unifiable with any literal in body(c; ), otherwise
di = C;.

2Allowing variables that only appear in the body may result
in unsound syntactic equivalence check as they can be arbitrarily
renamed.

15051

Example 1 (Rule unfolding). Consider the program:
{ 8(A) <= p(A), aux(A,B) }
P fr—

g(A) < p(B), p(C), aux(A,B), aux(A,C)
8(A) < p(B), q(A,B), r(B)

and the rule r : aux(A,B) < p(B), q(A,B). The result of un-

folding P upon 7 is:

8(A) <= p(A), p(B), q(A,B)
Q= { 8(A) <= p(B), p(C), q(A,B), 4(A,C)
8(A) < p(B), q(A,B), r(B)
Given a set of rules S, unfold(P, S) is the result of succes-
sively unfolding P upon every rule in S.
To refactor a logic program, we want to introduce in-
vented rules:

Definition 2 (Invented rule). Given a logic program P and
a finite set of variables X, an invented rule r satisfies four
conditions:

1. pred(head(r)) ¢ P
2. Va € body(r), pred(a) € P
3. Ya € body(r), var(a) C X

4. var(head(r)) = U, epoay(r) var(a)

In this paper, we use the prefix aux to denote the predicate
symbol of an invented rule.

We want to refactor an input rule using invented rules. We
call such rules refactored rules:

Definition 3 (Refactored rule). Let r be a rule and S be
a set of invented rules. Then 7’ is a refactored rule of r iff
unfold({r'},S) = {r}. For a logic program P and a set
of invented rules S, Z(P, S) denotes the set of all possible
refactored rules of rules in P.

Example 2 (Refactored rule). Given the rules in Q and the
invented rule aux in Example 1, the first two rules in P are
refactored rules.

We define a refactored program:

Definition 4 (Refactored program). Given a logic program
‘P and a finite set of invented rules .S, a logic program Q C
PUSUZ(P,S) is arefactored program of P iff unfold(Q\
S, QN S) =P, and we refer to Q as a proper refactoring if
vS' c 9N S,unfold(Q\ S,QNS") #P.

To help explain the intuition behind Definition 4, note the
following three properties of a refactored program. First, a
refactored program consists of three kinds of rules (a) in-
put rules from P, (b) invented rules from S, and (c) refac-
tored rules from Z(P, S). Second, P and Q must be syntac-
tically equivalent, which means that we can unfold Q upon
the invented rules to get P. Third, we are only interested in
programs Q which are proper refactorings of P as any non-
proper refactoring containing Q is always a larger program.
We want optimal knowledge refactoring (OKR):

Definition 5 (Optimal knowledge refactoring problem).
Given a logic program P and a finite set of invented rules
S, the optimal knowledge refactoring problem is to find a
refactored program Q such that for any refactored program

Q' size(Q) < size(Q).



We prove that the OKR problem is A/P-hard:

Theorem 1. The optimal knowledge refactoring problem is
NP-hard.

Proof (Sketch). The full proof is in Appendix A. We pro-
vide a reduction from maximum independent set in 3-regular
Hamiltonian graphs (Fleischner, Sabidussi, and Sarvanov
2010) to a propositional variant of OKR where ¢q,co € S
may refactor the same rule of P iff body(c1) N body(c2) = 0
(OPKRyyp). Let G = (V, E) be a 3-regular Hamiltonian
graph and C' a maximum independent set of GG. Observe
that in G’ = (V \ C,E’), where E’ contains all edges
from E with endpoints in V' \ C, every vertex has degree
at most 2. Thus, computing a maximum weighted indepen-
dent set of G’ is possible in polynomial time. Furthermore, it
can be shown that optimal refactorings of instances derived
from a 3-regular Hamiltonian graph G are always a super-
set of a maximum independent set of G. Thus, we can re-
duce OPKRyy p to OPKR (propositional OKR), a fragment
of OKR. O

4 MAXREFACTOR

Given an input logic program P, a space of possible invented
rules S, and a maximum number K of invented rules to con-
sider, MAXREFACTOR refactors P by finding C' C S where
|C| = K. In other words, MAXREFACTOR solves the opti-
mal knowledge refactoring problem.

Before describing how we search for a refactoring, we
first introduce linear invented rules to restrict the space of
possible invented rules.

4.1 Linear Invented Rule

The space of possible invented rules .S directly influences
the effectiveness and efficiency of refactoring. For example,
KNORF defines S as all subsets of rules in an input program.
For instance, if there is an input rule g(A) < p(A,B), q(B,C),
r(B,D), KNORF adds four possible invented rules to S

aux1(A,B,C) < p(A,B), q(B,C)
auxs(A,B,D) < p(A,B), r(B,D)
auxs(B,C,D) < q(B,C), r(B,D)
aux4(A,B,C,D) < p(A,B), q(B,C), r(B,D)

Defining S this way has the advantage that it restricts which
literals can appear in an invented rule. However, this ap-
proach also has disadvantages. As we show in Section 1,
this approach cannot invent a rule that is not a subset of any
input rule (e.g. auxy in Ps), nor can the size of the invented
rule be larger than any input rule (e.g., auxs in Qo).

To overcome these limitations, we use a new approach to
define the space of invented rules. We denote the set of body
predicate symbols in the logic program P as Pr(P) and a
finite set of variables as X'. We define the set of all possible
body literals L = {p(v) | p € Pr(P),v € X® 1. We
define S as the space of all combinations of literals from L,
i.e., the power set of L. The size of S is exponential in the
size of L and S is clearly a superset of the space considered
by KNORF. Therefore, our key insight is not to consider all
combinations of L and to instead only consider the linear
invented rules:
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Definition 6 (Linear invented rule). A linear invented rule
is rule where no variable occurs more than once in its body.

Example 3 (Linear invented rule). The rule aux;(A,B,C)
+— p(A,B), q(B,C) is not linear because its body literals
share the variable B. By contrast, the rule auxs(A,B,C,D) <
P(A,B), q(C,D) is linear.

For any invented rule r, we can always build a linear in-
vented rule lin(r) as follows: (i) rewrite the body literals
such that the predicate symbols remain unchanged and the
variables occur linearly, then (ii) build a new head literal
such that var (head(lin(r))) = U,epody(iin(r)) vor(a)-

To motivate the use of linear invented rules in refactoring,
we show the theorem:

Theorem 2. If the optimal knowledge refactoring prob-
lem has a solution using the set of invented rules C C S
then it has a solution using C’ C Sy;,, where Sy, =

{lin(s) | s € S}.

Proof. Suppose there is an invented rule r € C, we can al-
ways build a linear invented rule v/ = lin(r), then C’
C\ {r}U{r'}. First, observe that |C’| < |C| because either
an invented rule has a unique linear invented rule general-
ising it, or multiple invented rules of C' are generalised by
the same linear invented rule. Second, for any body literal in
the input program that is covered by 7, it can also be cov-
ered by r’ via variable mapping. Thus, we can always get a
refactored program of the same or smaller size using C’. [

Theorem 2 implies that we can restrict S' to linear invented
rules without compromising the optimal solution. As we
show below, defining S as linear invented rules allows us
to simplify the COP formulation.

4.2 COP Encoding

According to Theorem 1, the optimal knowledge refactoring
problem is NP-hard, making it computationally challeng-
ing. Constraint programming (CP) is a successful frame-
work for modeling and solving hard combinatorial prob-
lems (Hebrard 2018). Therefore, MAXREFACTOR formu-
lates this search problem as a constrained optimisation prob-
lem (COP) (Rossi, Van Beek, and Walsh 2006). Given (i) a
set of decision variables, (ii) a set of constraints, and (iii) an
objective function, a COP solver finds an assignment to the
decision variables that satisfies all the specified constraints
and minimises the objective function.
We describe our COP encoding below?.

Decision Variables MAXREFACTOR builds decision vari-
ables to determine (a) which literals are in which invented
rules, and (b) how to refactor input rules using the invented
rules.

For task (a), for each possible invented rule ry for & €
[1,K] and p € Pr(P), we use an integer variable ry, , to

3COP problems can also be encoded as MaxSAT problems
(Bacchus, Jérvisalo, and Martins 2021), an optimisation variant of
SAT. We also develop a MaxSAT encoding and include it in the
appendix.



indicate the number of literals with predicate symbol p in
the body of 7.

For example, consider the input program:

P )
where the superscript denotes the index of a body literal.
For simplicity, assume that K = 1, i.e. we can only invent
one rule denoted ;. The decision variables for inventing this
rule are {ry p, 71,4, 71,5} Suppose 1, = 11,4 = 1 and
r1,s = 0. Then ry : aux1(A,B,C) <— p(A), q(B,C).

For task (b), MAXREFACTOR creates two groups of deci-
sion variables: (i) use,  to denote whether an input rule c
is refactored with the invented rule ry, and (ii) coverc q 1 to
denote whether a body literal a in an input rule c is covered
by an invented rule r, which means this literal is not in the
refactoring of c.

Concerning (i), for each input rule ¢ € P and k € [1, K]
we use a Boolean variable use. ;, to indicate that c is refac-
tored using the invented rule r;. However, as we show later
in the example, an input rule can be refactored using the

same invented rule multiple times. Therefore, we use the
Boolean variable usei . Where t > 1 to indicate that ry, is

c1: g(A) < p(B)™, p(C)*2, q(A,B), q(B,C)*
co : g(A) + p(B)™, g(A,B)™, q(A,C)™, s(C)*

used ¢ times* in the refactoring of c.

Concerning (ii), for each input rule ¢ € P, literal a €
body(c), k € [1, K], and integer ¢ > 1, we use a Boolean
variable cover?m i to indicate that a is covered by the ¢-th
instance of ry, in the refactoring.

Regarding the above example, the decision variables used
to determine the refactoring of each input rule are:

1 2 1
use, ; useg ; useg, q
cover?! cover?
c1,al,1 c1,a2,1
COVET,, a31 : COVETy, a4
COVET ¢, 211 COVET ¢, 291
If the decision variables are false and the rest are true

then the refactored rules are:

o |

The refactored rules are constructed through the follow-
ing steps: (i) If a use variable is true for an invention [ and
an input rule R, then create a body literal P for the refac-
tored rule of R where all the variables of P are unknown.
(ii) For every body literal L covered by I (denoted by the
cover variable), bind the variables of L to the first unknown
variables of P corresponding to the same predicate symbol.
(>iii) If there are still unknown variables in P, bind the vari-
ables of any literals covered by I with the same predicate
symbols to them.

g(A) < auxi(B,A,B), aux,(C,B,C)
g(A) < aux1(B,A,B), q(A,C), s(C)

“The domain of ¢ is defined by the maximum number of times
a predicate symbol appears in an input rule.
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Constraints MAXREFACTOR ensures the validity of the
refactoring through a set of constraints.

We use Constraint (1) to ensure that for k € [1, K], if the
invented rule 7, is used ¢ times in the refactoring of ¢ € P
then 7, is used ¢ — 1 times in the refactoring of c.

Ve, k,t(t > 1), usei,k — use’;jkl (D

We use Constraint (2) to ensure that for k € [1, K], if ry,
is used ¢ times to refactor ¢ € P, then r; cannot contain a
predicate symbol p which is not the predicate symbol of at
least one literal in body(c).

Ve, p, k,t (pnotin c), = (usel , Arip >0)  (2)

We use Constraint (3) to ensure that for k € [1, K], that any
predicate symbol p of a literal a in the body of ¢ € P covered
by invented rule ry, is the predicate symbol of a literal in the
body of r. Below, e(a, p) abbreviates pred(a) = p.

Ve, a, k,t (e(a,p)) coverl, , , — (usel; Arip>0) (3)

We use Constraint (4) to ensure that for k € [1, K] and ¢ €
‘P, if the predicate symbol p occurs in multiple body literals
of ¢ and ry, times in 7y, then a single use of 7 can only
cover 7y, ,, of the occurrences of p in c.

t
c,a,k

Ve,p, k,t, >
acbody(c)Ne(a,p)
Note that if 7, ,, is larger than the number of body literals
with predicate symbol p in a rule, it would still be valid,
because these literals can be refactored by duplication. For
example, given the input rule g(A) — p(A,B) and the in-
vented rule aux(A,B,C,D) — p(A,B),p(C,D), we can refactor
the same literal twice and get g(A) — aux(A,B,A,B).

cover <mep @

Objective Before introducing our objective function, we
first create two useful yet redundant decision variables. First,
for each k € [1, K], we use a Boolean variable usedy, to in-
dicate whether the invented rule r, is used in the refactoring.
Second, for each input rule ¢ € P and literal a € body(c),
we use a Boolean variable covered, , to indicate that a is
not in the refactoring of c. These variables are directly cal-
culated from use and cover respectively. The constraints are
as follows:

vk, (usedk < dc,t, usez_’k) &)
t

Ve, a, (coveredcva < dk,t, covercya,k) (6)
Following Definition 5, MAXREFACTOR searches for the
refactored program with the smallest size. In our encoding,
MAXREFACTOR achieves this goal by minimising the fol-
lowing objective function using a COP solver:

Z usedy, + Z Thp + Z usef‘,yk — Z covered., (7)
k k,p

c,k,t c,a

The first two terms are the size of the head and body literals
used to define the invented rules added to the refactored pro-
gram, respectively. The third term is the size of the invented
rules in the refactored rules of the input program. The last
term is the total number of covered body literals in the input
program, which should be deducted from the size. Note that
by adding the objective to the size of the input program, we
get the size of the refactored program.
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Figure 1: The compression rates of MAXREFACTOR and
KNORF (both calling CP-SAT) with a 600s timeout. There
are two bars for each horizontal coordinate, representing the
results of MAXREFACTOR (green) and KNORF (blue) on the
same program.

4.3 The Optimal Refactoring

We show that by solving the aforementioned COP problem,
MAXREFACTOR solves the OKR problem (Definition 5):

Theorem 3. Let P be a logic program such that |[P| = n
and S a set of invented rules. Then MAXREFACTOR can
solve the OKR problem with K = [2] [£51], where s =
max{size(c) | c € P}.

The proof is shown in Appendix B.

5 Experiments

To test our claim that MAXREFACTOR can find better refac-
torings than current approaches, our experiments aim to an-
swer the question:
Q1: How does MAXREFACTOR compare against KNORF on
the optimal knowledge refactoring problem?
To answer Q1, we compare the compression rate of the
refactored programs produced by MAXREFACTOR and
KNORF given the same timeout.

To understand the scalability of MAXREFACTOR, our ex-
periments aim to answer the question:
Q2: How does MAXREFACTOR scale on larger and more
diverse input programs?
To answer Q2, we evaluate the runtime and refactoring rate
of MAXREFACTOR on progressively larger programs.

Settings We use two versions of MAXREFACTOR: one
which uses the COP solver CP-SAT? and another which uses
the MaxSAT solver UWrMaxSat (Piotréw 2020). We con-
sider at most two invented rules in a refactoring, as we found

>https://developers.google.com/optimization
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Figure 2: The compression rates of MAXREFACTOR (calling
MaxSAT) and KNORF (calling CP-SAT) with a 600s time-
out. There are two bars for each horizontal coordinate, repre-
senting the results of MAXREFACTOR (green) and KNORF
(blue) on the same program.

it leads to good results. For KNORF, we run the code from
its repository® and use the same parameters as stated in that
paper. All experiments use a computer with 5.2GHz CPUs
and 16GB RAM. We run MAXREFACTOR and KNORF on a
single CPU.

5.1 QI1: Comparison with KNORF

Datasets We use two datasets, Lego and Strings, from the
KNORF paper. Lego has 200 programs, each with a size of
264-411. Strings has 196 programs, each with a size of 779—
12,309. We ran KNORF on other datasets but it frequently
crashed on them’ so we only report the results on these two
datasets.

Method We compare the compression rate of the refac-
tored programs returned by MAXREFACTOR and KNORF.
Given an input program P and a refactored program Q, the
compression rate cr is defined as:

size(P) — size(Q)
size(P)

cr =

To be clear, a larger cr indicates better refactoring.

®https://github.com/sebdumancic/knorf_aaai21

"KNORF crashes on other datasets during its COP modeling
phase. We contacted the authors of KNORF for advice and they
confirmed that it is a fundamental bug related to incorrect assump-
tions on the input program. We tried to fix the bug according to
their advice but it fixed only a small number of crashes and the
runtime significantly increased. Therefore, we only report the re-
sults on Lego and Strings from the KNORF paper.
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the red dashed line denote the average normalised gap of
40 independent runs and the boxes show the distribution of
these results.

Results Figure 1 compares the compression rates of
MAXREFACTOR and KNORF with the same timeout. Both
approaches call CP-SAT. For Lego, MAXREFACTOR can
increase compression rates by at least 27% across all pro-
grams. For Strings, MAXREFACTOR finds better refactor-
ings on 172 out of 196 programs, increasing the compression
rates by an average of 30%. In the remaining 24 programs,
both MAXREFACTOR and KNOREF fail to find any refactor-
ing in half of them, while in the other half MAXREFACTOR’s
compression rates are on average 10% lower than KNORF’s.

We also use a version of MAXREFACTOR that uses a
MaxSAT solver (See Appendix C for encoding details). Fig-
ure 2 shows the results when compared to KNORF. Given
the same timeout (600s), MAXREFACTOR with MaxSAT
achieves better refactoring effect compared to CP-SAT.
For Strings, MAXREFACTOR finds better refactorings than
KNOREF on all the 196 programs, increasing the compression
rates by 30%—-60% with an average of 53%.

In conclusion, these results suggest that MAXREFACTOR
performs substantially better than KNORF at solving the
knowledge refactoring problem, thereby answering Q1.

5.2 Q2: Scalability

Datasets. We evaluate the scalability of MAXREFACTOR
on three real-world problems: DrugDrug (Dhami et al.
2018), Alzheimer (King, Sternberg, and Srinivasan 1995),
and WordNet (Bordes et al. 2014). Each dataset contains

millions of rules so we can randomly sample programs of
distinct sizes from them and use the sampled programs to
test the performance of MAXREFACTOR. Specifically, for
every size in {200, 250, 300, ..., 1000}, we uniformly sam-
ple 10 programs from each dataset and run MAXREFACTOR
(calling MaxSAT) to refactor them.

Results. Figure 3a shows the runtime required for
MAXREFACTOR to find an optimal solution and prove op-
timality for different sizes of input programs. The timeout
for a single run is set to 3600s and the runtime is counted
as 3600s if the limit is exceeded. For a program size of 400,
the average runtime on all the datasets is less than 500s. The
performance varies across different datasets. For DrugDrug
and Alzheimer, MAXREFACTOR can scale to programs with
a size of 600 and find the optimal refactorings. For WordNet,
it can scale to programs with a size of 1000.

Figure 3a shows the runtime required for MAXREFAC-
TOR to solve the optimal solution for different sizes of input
programs, i.e. to find an optimal refactoring and, crucially,
prove optimality. However, in most cases, MAXREFAC-
TOR can find near-optimal refactorings quickly but takes
a while to prove optimality. To illustrate this behaviour,
we select 3 challenging programs from different datasets
and measure the sizes of the best refactored programs
found by MAXREFACTOR under different time limits. Com-
pared to the runtime to prove the optimal refactorings (opt-
time), MAXREFACTOR can find refactored programs within
20% of the final size with only 44% (Figure 3b), 0.2%
(Figure 3c), and 0.3% (Figure 3d) of the runtime respec-
tively. For example, in the DrugDrug task (Figure 3c),
MAXREFACTOR finds a refactoring of size 630 within 300s,
while it takes 2,440 minutes to prove that the optimal refac-
toring size is 623. These results indicate that MAXREFAC-
TOR in practice quickly finds a near-optimal refactoring but
takes time to prove optimality.

In conclusion, these results suggest that MAXREFACTOR
scales well on large and diverse programs from real-world
problems, thereby answering Q2.

6 Conclusion and Limitations

We have introduced a novel approach to solve the opti-
mal knowledge refactoring problem, which refactors a logic
program to reduce its size. We implemented our ideas in
MAXREFACTOR, which formulates this problem as a COP.
Our experiments show that MAXREFACTOR drastically re-
duces the sizes of refactored programs compared to the state-
of-the-art approach. Our results also show that MAXREFAC-
TOR exhibits scalability on different programs from real-
world problems.

Limitations We do not support recursive invented rules or
including other invented predicates in an invented rule. Do-
ing so may lead to better refactoring. Future work should
address this limitation.
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