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ABSTRACT

Models of biological regulatory networks are essential to understand cellular processes. How-
ever, the definition of such models is still mostly manually performed, and consequently prone
to error. Moreover, as new experimental data are acquired, models need to be revised and
updated. Here, we propose a model revision procedure and associated tool, capable of providing
the set of minimal repairs to render a model consistent with a set of experimental observations.
We consider four possible repair operations, using a lexicographic optimization criterion, giving
preference to function repairs over topological ones. Also, we consider observations at stable
state discarding the model dynamics. In this article, we extend our previous work to tackle the
problem of repairing nodes with multiple reasons of inconsistency. We evaluate our tool on five
publicly available logical models. We perform random changes considering several parameter
configurations to assess the tool repairing capabilities. Whenever a model is repaired under the
time limit, the tool successfully produces the optimal solutions to repair the model. Instances
were generated without the previous limitation to validate this extended approach.

Keywords: Boolean functions, logical formalism, model revision, regulatory networks.

1. INTRODUCTION

B iological regulatory networks are composed of genes, proteins, and their interactions to describe

complex cellular processes. Modeling such networks is particularly useful to be able to computationally

reproduce existing observations, test hypotheses, and identify predictions in silico.

Different formalisms have been proposed to model the dynamical behavior resulting from the network’

interacting components with different levels of detail (for a review, see Karlebach and Shamir, 2008). Here,

we consider the logical formalism introduced by Thomas (1973). Network components are represented by

discrete variables (we consider the Boolean case), edges represent regulatory interactions (either positive or

negative), and regulatory effects are represented by Boolean functions.

The definition of such models is typically a manual task performed by a domain expert, in particular for

the definition of regulatory effects, where the study of the behaviors generated by the model is compared

against existing data (e.g., literature or experimental). However, the study of the generated behaviors is

hampered by the combinatorial explosion of the qualitative state space. To tackle this problem, several

formal verification techniques have been proposed, such as model checking to automatically verify
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reachability properties (Monteiro et al., 2008), model reduction to reduce the size of the generated dy-

namics (Naldi et al., 2011), and the identification of attractors (Naldi et al., 2007; Hopfensitz et al., 2012),

among others (Paulevé, 2018).

As the model is extended or new data are acquired, the model may become inconsistent, needing to be

revised. Aside from potential topological changes, one crucial step of the model revision process is the

redefinition of the component’s regulatory function, a manual process that is not formally defined and

therefore is prone to error.

Approaches to model revision have been proposed using Answer Set Programming (ASP) (Gebser et al.,

2010, 2011; Merhej et al., 2017) and Boolean Satisfiability (SAT) (Guerra and Lynce, 2012). A recent

approach was presented by Lemos et al. (2019), where ASP was successfully used to repair inconsistent

logical models, although with some limitations, since it does not consider the addition of new regulators as

a repair operation or the impact of changing a regulatory function in the model dynamics.

In this article, we propose an ASP-based model revision approach for the Boolean logical formalism,

with four possible causes for model inconsistency and the corresponding repair operations. An optimization

criterion is also proposed to determine an optimal set of repair operations to render an inconsistent model

consistent. We extend a previous work (Gouveia et al., 2019) by tackling the problem of repairing an

inconsistent node with multiple reasons of inconsistency, preserving the proposed optimization criteria.

The article is organized as follows. Section 2 describes the logical formalism applied to biological

regulatory networks. Section 3 describes the model revision process and the proposed repair operations.

The proposed approach is presented in Section 4. The implemented tool is evaluated on five publicly

available biological models in Section 5. Section 6 presents the conclusion and future prospects.

2. LOGICAL REGULATORY NETWORKS

Biological regulatory networks are usually represented by a directed graph G = (V‚ E), known as regu-

latory graph, where nodes represent the set of components V, and the set of signed edges E 4 {(u, v, t): u,

v ˛V; t ˛{-, +}} represents regulatory interactions. If the regulatory graph has an edge from vi to vj, then vi

is said to be a regulator of vj. The sign t associated with each edge represents a positive interaction

(activation) or a negative interaction (inhibition). Such regulatory graphs define the topology/structure of

the network, but lack information on the components’ regulatory rules.

2.1. Logical model

A logical model of a regulatory network is defined by a tuple (V‚K), where V = {v1, v2, ., vn} is the set

of n regulatory components of the network, where each vi is associated with an integer value in Di = {0, .,

maxi}, representing the component concentration level. A state of the network is thus defined as a vector

s˛S, where S =
Q

vi2V Di. Then K = fK1‚ K2‚ . . . ‚ Kng is the set of n regulatory functions where Ki is the

regulatory function of vi and Ki: S / Di.

In this work, we consider only Boolean logical models where 8vi
maxi = 1, that is, each component of the

network is represented by a Boolean value, meaning that the component is either present (active) or absent

(inactive).

2.2. Boolean functions

Let B be the set {0, 1} and Bn be the n-dimensional Cartesian product of the set B. Given (x1‚ . . . ‚ xn) 2 Bn,

with 1 £ i £ n, a Boolean function f : Bn ! B is positive (resp. negative) in xi if fjxi = 0 £ fjxi = 1 (resp. xi if

fjxi = 0 ‡ fjxi = 1). A given function f is monotone if it is either positive or negative for every xi (Crama and

Hammer, 2011).

A monotone Boolean function f can be represented in disjunctive normal form (DNF) (Crama and

Hammer, 2011), as a disjunction of terms where each term is a conjunction of literals (Biere et al., 2009),

and each variable xi appears always as a positive literal (xi) if f is positive in xi, or negated (:xi) otherwise.

In other words, each component regulating another component either has a positive (resp. negative) in-

teraction always appearing as a positive (resp. negated) literal in the DNF terms of the regulatory function.

A nondegenerate Boolean function is a function that depends on all of its variables, that is, all variables

have an impact on its result. More formally, a function f is nondegenerate if all of its variables are essential.
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A variable xi is essential in f if fjxi =0(X) s fjxi =1(X) for some X 2 Bn - 1, and is inessential otherwise

(Wegner, 1985).

In this work, we restrict the domain of the regulatory functions to the set of monotone nondegenerate

Boolean functions.

2.3. Dynamics

From a given initial state of the network, the value of a component can be updated following its

regulatory function, and every component can potentially change its value at any given time. The gener-

ation of successors of each state can follow a synchronous update policy, an asynchronous update policy, or

other update policies. In a synchronous update policy, every component is called to update its value

simultaneously, yielding a single state successor. In an asynchronous update policy, the state has a distinct

successor for each component changing its value.

The generated dynamics is represented by a state transition graph (STG), where each node corresponds to

a state of the network, and each edge represents a possible transition between states. A key property of

interest is the identification of attractors in the STG, which typically denote subsets of states of biological

interest (Hopfensitz et al., 2012). There are two types of attractors: complex and point attractors. Complex

attractors are sets of mutually reachable states defined as terminal strongly connected components (SCC). If

an SCC has a single state, it is denoted a point attractor or stable state, that is, a state without a transition to

any other state in the STG.

In this work, we focus on the set of stable states (point attractors) of the Boolean logical model.

3. MODEL REVISION

Models of biological regulatory networks are not always in line with existing experimental observations,

that is, the model cannot reproduce some experimental observations. In this case, we say that the model is

inconsistent and must be revised and updated.

We consider a model to be consistent, if all its nodes are consistent. A given node is consistent if the

value given by its regulatory function is the same as the one given by the experimental observation (if

available), and inconsistent otherwise. In the following, we consider all the model stable states as exper-

imental observations.

Given a Boolean logical model, we define four possible causes for inconsistency and the corresponding

repair operations as shown in Table 1. Repair operations can be classified as function repairs (class F) thus

changing a given regulatory function, or as topological repairs (class T) thus changing the topology of the

regulatory graph.

In the following, we describe in detail the repair operations defined as well as the complete model

revision procedure, defining a preference order on the proposed repairs of Table 1. In particular, we assume

that the domain expert has a higher level of confidence in the correctness of the network topology than in

the regulatory functions of the model. We therefore give preference to the use of class F rather than class T

repairs.

3.1. Function repair

The definition of logical models still relies on domain experts to choose the best functions for every

network component. However, given a component with k regulators, there are 22k

possible Boolean

Table 1. Causes of Inconsistency and Corresponding Repair

Operations

Type Cause Repair operation Class

1 Wrong regulatory function Function change F

2 Wrong interaction type Edge sign flip T

3 Wrong regulator Edge removal T

4 Missing regulator Edge addition T

F, function repair; T, topology repair.
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functions to choose from, rendering this manual process prone to error. In this work, we restrict the function

space to the set of monotone nondegenerate Boolean functions, which still yields a large number of

functions to choose from, as a function of k.

Let f and f 0 be two monotone nondegenerate Boolean functions in Bn ! B, with the relationship � being

defined as follows:

f�f 05f (X)0f 0(X): (1)

A partial order set is then defined by the set of all monotone nondegenerate Boolean functions in Bn ! B
and the relationship � (Crama and Hammer, 2011; Cury et al., 2019), and is represented by a Hasse

diagram (see Fig. 2). Considering the partial order relationship between functions, we rely on the work

proposed by Cury et al. (2019) to compute the functions with minimum distance of the original one, that is,

their closest neighbors. In Cury et al. (2019), a set of rules is proposed to compute the parents/children of a

given function f without the need to compute the whole function space. Given two functions f and f 0, f 0 is a

parent of f if and only if f � f 0 and 6 9 f 00 such that f � f 00 and f 00 � f 0. In this case f is said to be a child of f 0.
Two functions are said to be comparable if one is an ancestor of the other, that is, if there is a sequence of

parents connecting the two.

When a function is inconsistent with the experimental observations, we first determine whether it is

necessary to generalize the function (go up in the Hasse diagram), or specify the function (go down in the

Hasse diagram). If it is necessary to generalize (resp. specify) the function, we compute the set of parents

(resp. children) of the function. We continue to go up (resp. down) the diagram while none of the parents

(resp. children) is consistent.

3.2. Topology repair

Changing regulatory functions may not be enough to make a model consistent. In this case, it may be

necessary to (also) change the topology of the network. Here, we consider three topology-changing repair

operations: flip the sign of an edge; remove an edge; and add an edge.

Flipping the sign of an edge changes the role of a single regulator (the source of the edge). Since we

consider the set of monotone nondegenerate Boolean functions, it is not possible to have regulators with

dual sign, that is, regulators acting both as activators and as inhibitors. Thus, upon a flip of a sign, a negative

regulator (inhibitor) becomes a positive regulator (activator) and vice versa. By adding (resp. removing) an

edge, we are adding (resp. removing) regulators from the Boolean function, which effectively changes the

dimension of the function space, which may have a greater impact than a function repair.

3.3. Repairing a model

A model is considered to be inconsistent and deemed to be repaired if there is at least one inconsistent

node. A node is inconsistent with some experimental observation if the expected value of the node differs

from the node value evaluated by the corresponding regulatory function. Here, as previously mentioned, we

consider the model’s stable states as experimental observations.

Figure 1 (left) shows an example of an inconsistent model. The value of the experimental observa-

tion is adjacent to each node in the graph. This model with the corresponding observations has two

inconsistent nodes: v1 and v3. For example, node v1 is only positively regulated by v2 (which has an

observed value of 0), and therefore, the function of v1 evaluates to 0, but the experimental observation of

v1 is 1.

FIG. 1. Example of logical models. On the left is an inconsistent model given the observation besides each node. On

the right is a consistent model (repaired).
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There might be many reasons for a node to be inconsistent. Assuming that we have a higher level of

confidence in the correctness of the network topology than in the regulatory functions of the model, to

render a node consistent, one tries first to repair the function before considering any topological change

in the network. This allows the search for possible repairs in the dimension of the current function before

expanding the search space considering different function dimensions. To give preference to function

repairs over topological repairs, and to do a guided search for repairs, avoiding considering all the com-

binations of repair operations at once, the following order for repairs is defined:

(1) Repair the function;

(2) flip the sign of an edge;

(3) add/remove an edge.

In Figure 1 (left), node v3 is inconsistent and different (function and topological) repair operations can

be applied. There are nine monotone nondegenerate Boolean functions with three regulators (Fig. 2). Each

of the three incoming edges can flip their sign. Also, we can remove any of the three incoming edges

or add the missing edge from node v3 to itself. If we consider the addition and removal of edges,

changing the search space of the Boolean functions, and also that we can apply any combination of repair

operations, we obtain a set of 2087 possible combinations of repair operations. Since models of regulatory

networks typically have more than four nodes, the number of repair operations rapidly increases due to the

combinatorial explosion.

We start by determining the minimum number of inconsistent nodes, to determine the solution with the

minimal number of topology repairs. To repair an inconsistent node we proceed as follows:

(1) Try to repair the node by changing the regulatory function.

� If changing the function is sufficient to make the model consistent, the procedure stops.

(2) Consider applying topological repair operations incrementally.

(a) Consider flipping sign of edge operations.

� Consider all the flipping edge operations incrementally until all the combinations are con-

sidered or the model is rendered consistent.

(b) Consider add/remove edge operations incrementally as described above.

Note that whenever a topology repair operation is applied, the regulatory function must be verified for

inconsistency again, and a function repair operation is most likely necessary.

Figure 1 (right) shows a repaired version of the left model, where the edge from v2 to v1 flipped the sign,

making node v1 consistent, and the regulatory function of v3 is changed, making node v3 consistent. This is

an optimal model repair with minimal topological changes. Figure 2 shows the Hasse diagram for the set of

monotone nondegenerate Boolean functions of node v3. Marked in blue (dark gray) is the original function

of v3 (Fig. 1, left) and marked in green (light gray) is the regulatory function of v3 after the repair (Fig. 1,

right).

FIG. 2. Hasse diagram for monotone nondegenerate Boolean functions of three regulators (arguments v1, v2, and :v4).
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4. APPROACH

In this section, we describe the approach for the revision of Boolean logical models considering the set of

repair operations proposed in Section 3.

As previously mentioned, one must first determine if a model contains inconsistencies to repair it.

An ASP (Gebser et al., 2012) was proposed in a previous work to verify the consistency of a model given

a set of experimental observations (Gouveia et al., 2018). As previously stated, in this work, we consider

the model corresponding stable states, that is, we do not consider the model dynamics between specific

states.

Given a model, and a set of experimental observations, the previously published ASP computes the set of

minimum inconsistencies (Gouveia et al., 2018). Then, given the model, the set of experimental obser-

vations, and the computed set of inconsistencies, we developed a procedure to try to repair the model using

the repair operations in Table 1 (Gouveia et al., 2019).

If the model is consistent with the data, no revision is necessary. In case of an inconsistent model, our

ASP returns the minimum number of nodes that are inconsistent, that is, the minimum number of nodes

to which no value can be assigned. We denote these nodes as inconsistent nodes. Moreover, since we

give preference to the repair of regulatory functions, as described in Section 3, we retrieve additional

information from the ASP regarding the inconsistent nodes. We define two possible reasons of incon-

sistency: the regulatory function of an inconsistent node needs to be more specific or the function needs

to be more generic. For example, if a regulatory function of a given node produces a 0 (resp. 1) but the

value of the node should be 1 (resp. 0) in order for the node to be consistent, it is likely that a more

generic (resp. specific) regulatory function is needed. These reasons for inconsistency do not imply the

possibility of repairing a model by changing only the regulatory function, but give us a direction to search

for possible repairs, thus reducing the search space. Considering these reasons of inconsistency, an

inconsistent node may have the following: a single inconsistency, if the function needs to be more

specific or more generic, but not both simultaneously; or a double inconsistency, if a function may

need to be more specific with respect to one observation and more generic with respect to another

observation.

The proposed procedure determines the minimum repair operations necessary to make the model con-

sistent, using the following lexicographic optimization criteria where changes to the regulatory functions

are preferred over any topological change:

(1) Minimize the number of add/remove edge operations;

(2) minimize the number of flip signs of an edge operation;

(3) minimize the number of change regulatory function operations.

As an example, let us consider an inconsistent model with one inconsistent node. To determine the

optimal solutions (i.e., minimal repair operations to be applied), we start by trying to change the regulatory

function of the inconsistent node.

The search for possible function repairs is different in case of single or double inconsistency. The details

of each case are described in Sections 4.1 and 4.2, respectively. If no function is found, we proceed to

change the regulatory graph topology. In the first stage, we try to change only the sign of the incoming

edges of the inconsistent node. For each attempt of flipping the sign of an edge operation, we calculate all

the possible function changes again. Then, if flipping the sign of a single edge is not enough to make a

model consistent, we consider combinations of two edges. We consider combinations of increasing number

of edges until all the edge combinations are considered. If no solution is found, the procedure advances to

the next state of topological changes, by repeating this process considering the addition or removal of one

edge. If the model is still not consistent, then we consider the same process with two edges. All the

combinations are considered increasingly until no more edges can be added or removed.

This process is applied to every inconsistent node. Remember that we consider only the model stable

states as experimental observations, and thus repairing the consistency of one node does not impact the

consistency of other nodes.

Even though, in most cases, we do not have to compute the complete Hasse diagram of all possible

functions for a set of k regulators, the computation of the parents/children of a given function still greatly

increases with k. Therefore, we limit all regulatory functions to a maximum of 12 regulators, since most

models have regulatory functions with an average of 3 regulators and no more than 8 (Table 2).
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Finally, we developed a tool in C++*, with the behavior illustrated in Figure 3. Given a logical model

and a set of experimental observations, the tool decides whether the input is satisfiable. The input is said to

be satisfiable either if it is consistent or if a repair can be found. Otherwise it is unsatisfiable.

In addition, we provide a few options to the user. The user can define nodes as fixed nodes, preventing them

from being considered inconsistent. We also allow the user to define some edges as fixed, preventing

solutions with repair operations that change the sign or remove these edges (see README file in tool code).

4.1. Single inconsistent functions

When a function is inconsistent with a set of observations with a single inconsistency reason, it is

considered to replace it either by a more generic or a more specific function, according to the corresponding

reason of inconsistency. The inconsistent function is taken as the starting point of the search for a function

repair. This is performed using an ASP to compute the immediate neighbors (parents or children) of a given

monotone nondegenerate Boolean function, considering the set of rules proposed by Cury et al. (2019).

Using this ASP, our procedure computes all the parents (resp. children) of the regulatory function. If

none of the parents (resp. children) is consistent, the corresponding parents (resp. children) are computed,

until either a consistent function is found or there are no more functions. This approach guarantees that, if a

function repair operation can be applied, then the original function is modified to (one of) the nearest

function(s) in the Hasse diagram that is consistent with the experimental observations, that is, having less

differences in the truth table with respect to the original function.

Figure 4 (left) illustrates an example of a search for consistent functions where a more generic function is

necessary. The search starts at the original function and goes up the Hasse diagram until the nearest

consistent function is found.

Table 2. Boolean Logical Models Considered for Evaluation with the Corresponding:

Used Abbreviation, Number of Nodes, Number of Edges, Number of Stable States, Average Number

of Regulators Per Node, Maximum Number of Regulators, and Bibliographic Reference

Abbr. Model #N #E #SS Avg. Reg. M. Reg. Refs.

FY Fission yeast 10 27 12 3 5 Davidich and Bornholdt (2008)

SP Segment polarity (1 cell) 19 57 7 3 8 Sánchez et al. (2002)

TCR TCR signalization 40 57 7 1.425 5 Klamt et al. (2006)

MCC Mammalian cell cycle 10 35 1 3.5 6 Fauré et al. (2006)

Th Th cell differentiation 23 35 3 1.842 5 Mendoza and Xenarios (2006)

#E, number of edges; #N, number of nodes; #SS, number of stable states; Abbr., used abbreviation; Avg. Reg., average number of

regulators per node; M. Reg., maximum number of regulators; Refs., bibliographic references; TCR, T cell receptor; Th, T helper.

FIG. 3. Diagram of the developed tool. Model and experimental observations are the input of the tool. The tool

produces as output all the optimal sets of repair operations. Marked in dashed arrows are alternative flows, where the

model is consistent (no need of repair), or it is not possible to repair (no repairs produced). In light gray are represented

the ASP components of the tool, and in white are the C++ components. ASP, Answer Set Programming.

*Tool available at http://sat.inesc-id.pt/~joaofrg/JCB2019/model_revision.zip
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4.2. Double inconsistent functions

In the case where a function would need to be more specific with respect to one experimental observation

and more generic with respect to another observation, a different approach is needed given that, if a

consistent function exists, then it must be a noncomparable function, that is, a consistent function that is

neither the predecessor nor the ancestor of the original function. Note that in case of double inconsistency,

at least one value of the truth table of the regulatory function needs to change from 1 to 0, and at least one

value needs to change from 0 to 1. For example, in Figure 2, the function f = (v1) _ (v2 ^ :v4) is non-

comparable to the function f 0 = (v2) _ (v1 ^ :v4) since they are neither predecessors nor ancestors of each

other. It is easy to verify that these functions differ in two values in the correspondent truth table.

To repair an inconsistent function with double inconsistency, it is necessary to search for a consistent

noncomparable function before considering changing the topological repair operations. To achieve this, one

can start at the most specific (or most generic) function in the Hasse diagram and go up (resp. down) the

diagram until a consistent function is found or the top (resp. bottom) function is reached and no consistent

function is found. This approach guarantees that if a consistent function exists, it is found.

The search for a consistent noncomparable function has a big cost in terms of efficiency. In the worst-

case scenario, all monotone nondegenerate Boolean functions are analyzed. Note that the search space of

Boolean functions grows double exponentially with the number of regulators.

Moreover, in case of a function repair, we need to quickly determine the function (or functions) closest to

the original function to minimize the impact on the model dynamics when changing the regulatory function.

To do so, we consider the definition of level of a monotone nondegenerate Boolean function proposed by

Cury et al. (2019). One can start the search at the most specific function and go up the diagram until a

consistent function is found with the same level as the original function, or with the highest level that is

lower than the original function or the lowest level that is higher than the original function.

In this work, the model revision procedure, in particular the search for a function repair, was adapted to

consider the search for noncomparable functions in case of a double inconsistency. The set of closest

consistent functions are produced if they exist, considering the level of the functions. This way, the

optimization criteria of producing a function repair with the least impact possible are preserved.

As this search has a great impact on the tool performance since the number of possible functions increases

double exponentially with the number of regulators, an optimization was considered. If an inconsistent

function is closer to the most generic function than to the most specific function in the Hasse diagram,

considering that it is desired to find the closest consistent function if exists, starting the search at the most

specific function will probably mean that more functions will be considered than if the search starts at the

most generic function. Therefore, to start the search at the closest extreme (bottom or top function), the truth

table of the inconsistent function is analyzed. If the truth table of the function has more entries with value 1

than value 0, it means that the function is closer to the most generic function than to the most specific one. In

this case, the search for a noncomparable function starts at the top function. Otherwise, the inconsistent

function is closer to the most specific function and the search will start at the bottom function.

FIG. 4. Search approach of consistent functions in case of single inconsistency (left) and double inconsistency (right).

The diamond shape represents the space of monotone nondegenerate Boolean functions. In light gray is the search

space considered. Direction of the search is indicated by dashed arrows. Search stops at the dashed line.
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Figure 4 (right) illustrates an example of a search for consistent functions in case of double inconsistency.

As the original function is closer to the bottom function, the search starts at the most specific function and goes

up the Hasse diagram considering the whole space of functions. The search stops when consistent functions are

found with the same level of the original function, or with the closest level possible.

5. EVALUATION

To evaluate the proposed approach, we considered a set of five known logical models representative of

different processes and organisms (Table 2):

� Fission yeast (FY)—the cell cycle regulatory network of fission yeast by Davidich and Bornholdt (2008).
� Segment polarity (SP)—the segment polarity network that plays a role in the fly embryo segmentation

by Sánchez et al. (2002).
� T cell receptor (TCR)—the T cell receptor signaling network by Klamt et al. (2006).
� Mammalian cell cycle (MCC)—the core network controlling the mammalian cell cycle by Fauré et al.

(2006).
� T helper (Th)—the regulatory network controlling T helper cell differentiation by Mendoza and

Xenarios (2006).

We developed an additional tool to make a set of random changes to a logical model according to the

four given probabilistic parameters. Our goal was to change a logical model and then assess the repairing

Table 3. Results for Fission Yeast, Segment Polarity, T Cell Receptor Signalization,

Mammalian Cell Cycle, and T Helper Cell Differentiation

(%) FY SP TCR MCC Th

F E R A T (s) #TO T (s) #TO T (s) #TO T (s) #TO T (s) #TO

5 0 0 0 0.028 0 0.030 0 0.037 0 0.016 0 0.031 0

25 0 0 0 0.041 0 0.056 0 0.053 0 0.016 0 0.047 0

50 0 0 0 0.045 0 0.083 0 0.064 0 0.027 0 0.076 0

100 0 0 0 0.058 0 0.136 0 0.099 0 0.035 0 0.129 0

0 5 0 0 0.052 7 0.686 2 0.041 0 0.014 0 0.046 5

0 10 0 0 0.098 19 21.577 18 0.056 0 0.034 0 0.099 9

0 15 0 0 0.157 31 32.201 28 0.090 0 0.064 0 0.187 14

0 20 0 0 0.186 43 34.315 54 0.127 0 0.108 2 0.235 20

0 25 0 0 0.378 49 43.391 65 0.599 0 0.183 2 0.597 27

0 50 0 0 10.956 82 515.652 99 0.713 0 79.366 20 1.606 55

0 75 0 0 0.409 97 — 100 0.874 0 221.829 82 21.866 85

0 0 1 0 0.034 6 0.034 4 0.031 0 0.010 0 0.018 3

0 0 5 0 0.049 14 1.192 15 0.038 0 0.011 0 0.371 7

0 0 10 0 0.091 20 2.526 25 0.061 0 0.011 0 0.414 10

0 0 15 0 0.109 27 3.037 30 5.329 0 0.011 0 0.807 11

0 0 0 1 0.036 0 0.451 23 0.101 0 0.011 0 0.050 13

0 0 0 5 0.383 5 6.329 76 3.268 57 0.036 1 0.590 68

0 0 0 10 3.169 18 416.840 97 4.400 98 0.227 3 16.471 93

0 0 0 15 3.522 34 — 100 — 100 0.281 7 — 100

25 5 0 0 0.057 11 0.289 5 0.063 0 0.025 0 0.066 7

50 25 0 0 0.767 31 86.083 65 0.302 0 0.229 3 0.419 24

100 50 0 0 7.280 69 269.408 93 0.941 0 39.688 30 2.021 56

5 25 5 5 0.806 53 62.721 97 2.712 82 0.610 14 10.743 72

10 10 5 5 0.490 33 31.067 87 3.872 76 0.124 7 1.868 69

F%, E%, R%, and A% are the probabilistic parameters used to change the original model. Time (T), in seconds, is the median of

time for the solved instances. #TO is the number of time-outs. One hundred instances were considered per configuration per model.
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capabilities of the proposed tool to make the model consistent again. Four probabilistic parameters were

considered: changing a function (F%); changing the sign of an edge (E%); removing an existing edge (R%);

and adding a missing edge (A%).

Each model was changed with several parameter configurations, and 100 instances were considered per

configuration and per model (Table 3). We considered generating instances where only the functions were

changed, simulating cases where the topology of the network is correct. We also considered instances

where only the sign of the edges was changed, instances where only edges were removed, and instances

where only new edges were added. We generated instances with more function changes than topology changes,

since we assume greater confidence in the correctness of the topology than of the regulatory functions.

Only instances that have regulatory functions with less than 12 regulators were considered, as well as

only instances different from the original models, that is, instances where at least one change was applied.

All experiments were run on an Intel(R) Xeon(R) 2.1 GHz 32-core Linux machine, with a time limit of 600

seconds.

Table 3 presents the results of our tool applied to different models (FY, SP, TCR, MCC, and Th) and different

changes. The time is presented in seconds and corresponds to the median of times of solved instances.

Whenever the model repair was possible within the time limit, the tool successfully repaired the model with a

less or equal number of repair operations than the number of changes applied to the original model.

Table 3 shows that most of the repaired models can be repaired under 60 seconds. It is also possible to

verify that changing the topology of the network has a bigger impact, increasing the number of time-outs as

the number of changes increases. Perturbing the model with the addition of new edges has a bigger impact

in the model revision process than the removal of edges. This is due to the dimension increase of the

regulatory function, which greatly increases the search space for possible function repairs.

Figure 5 compares the time required to solve instances for each model. We can verify that our tool can

solve more instances of the MCC model than the FY model, although these models are the smallest models

with 10 nodes each. A difference between these two models is the number of stable states (Table 2). Stable

states define the restrictions that are considered for a model to be consistent. Therefore, a greater number of

stable states will have an impact on search for possible repair operations to render a model consistent.
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FIG. 5. Time results for each model.
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Comparing the results for the SP and TCR models, one can observe that, although the TCR model is

composed of more nodes (40) than the SP model (19), repairing the SP model takes more time in general,

for the same number of edges (57). This means that the latter has a more interconnected network, with

regulatory functions depending on a higher number of regulators. The dimension of the regulatory function

greatly impacts the performance of our tool, since the number of monotone nondegenerate Boolean

functions to be considered increases with a double exponential with the number of regulators.

Of the 12,000 generated instances, 28.43% have at least one node with double inconsistencies. Our tool

was able to find the optimal repair sets under the time limit for 53.84% of these instances. The number of

time-outs is, therefore, more notable in instances with double inconsistencies. This result was somehow

expected given that, in previous work, we showed that the search for regulatory functions has a great

impact on the tool performance. In the case of nodes with double inconsistency, a greater number of

functions are considered in function repairs.

6. CONCLUSION AND FUTURE WORK

In this work, we propose a logical model revision tool without considering dynamics. We use ASP in

the proposed tool to verify the consistency of a model, retrieve useful information in case of inconsistency,

and compute possible regulatory function replacement candidates. We also use C++ to search the set of

repair operations. Four repair operations are proposed: regulatory function change; edge sign flipping;

edge addition; and edge removal. Our tool receives as an input a logical model and a set of experimen-

tal observations, and produces sets of repair operations to render the model consistent, under the defined

optimization criteria (Section 4).

We extend our previous work to be able to repair an inconsistent node with multiple reasons of in-

consistency, while preserving the optimization criteria.

The tool was successfully tested using several publicly available biological models, being able to repair most

of the instances under 60 seconds. We observe that the dimension of the regulatory functions has the biggest

impact on the tool performance, since the number of monotone nondegenerate Boolean functions increases.

The results showed that it is possible to repair models with double inconsistencies. Moreover, the impact of

the dimension of the regulatory functions on the tool performance is more evident in these cases, since the

number of functions considered for a given function repair is greater than in the case of a single inconsistency.

As a future work, time-series data could be used to also consider the model dynamics. Currently, the proposed

tool produces all the optimal solutions to repair a model, which can be overwhelming for the nonexpert user.

Hence, heuristics could be used to reduce the number of solutions produced [see Merhej et al. (2017) for details].

In addition, we will consider improving the efficiency of function repair search. Profiling our results

showed that our tool spends most of the time computing parents and children of functions, and that this

impact increases with the number of regulators of the function.
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