
Model Revision of Boolean Regulatory
Networks at Stable State

Filipe Gouveia(B), Inês Lynce, and Pedro T. Monteiro

INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
{filipe.gouveia,ines.lynce,pedro.tiago.monteiro}@tecnico.ulisboa.pt

Abstract. Models of biological regulatory networks are essential to
understand the cellular processes. However, the definition of such mod-
els is still mostly manually performed, and consequently prone to error.
Moreover, as new experimental data is acquired, models need to be
revised and updated. Here, we propose a model revision tool, capable
of proposing the set of minimum repairs to render a model consistent
with a set of experimental observations. We consider four possible repair
operations, giving preference to function repairs over topological ones.
Also, we consider observations at stable state, i.e., we do not consider
the model dynamics. We evaluate our tool on five known logical mod-
els. We perform random changes considering several parameter config-
urations to assess the tool repairing capabilities. Whenever a model is
repaired under the time limit, the tool successfully produces the opti-
mal solutions to repair the model. Also, the number of repair operations
required is less than or equal to the number of random changes applied
to the original model.

1 Introduction

Biological regulatory networks are composed of genes, proteins and their inter-
actions to describe complex cellular processes. Modelling such networks is par-
ticularly useful to be able to computationally reproduce existing observations,
test hypotheses, and identify predictions in silico.

Different formalisms have been proposed to model the dynamical behavior
resulting from the network’ interacting components with different levels of detail
(see [12] for a review). Here, we consider the logical formalism introduced by
Thomas [20]. Network components are represented by discrete variables (here
we consider the Boolean case), edges represent regulatory interactions (either
positive or negative) and regulatory effects are represented by Boolean functions.

The definition of such models is typically a manual task performed by a
domain expert, in particular for the definition of regulatory effects, where the
study of the behaviors generated by the model are compared against existing

Fundação para a Ciência e a Tecnologia PhD grant SFRH/BD/130253/2017, national
funds UID/CEC/50021/2019, grant SFRH/BSAB/143643/2019 and project grant
PTDC/EEI-CTP/2914/2014.

c© Springer Nature Switzerland AG 2019
Z. Cai et al. (Eds.): ISBRA 2019, LNBI 11490, pp. 100–112, 2019.
https://doi.org/10.1007/978-3-030-20242-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20242-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-20242-2_9

Model Revision of Boolean Regulatory Networks at Stable State 101

data (e.g. literature or experimental). However, the study of the generated
behaviors is hampered by the combinatorial explosion of the qualitative state
space. To tackle this problem, several formal verification techniques have been
proposed, such as: model-checking to automatically verify reachability proper-
ties [16], model reduction to reduce the size of the generated dynamics [17], and
the identification of attractors [11], among others [18].

As the model is extended or new data is acquired, the model may become
inconsistent, and in that case needs to be revised. One crucial step of the model
revision process is the redefinition of the component’s Boolean functions, a man-
ual process that is not formally defined and therefore is prone to error.

Approaches to model revision have been proposed using Answer Set Program-
ming (ASP) [6,8,15] and Boolean Satisfiability (SAT) [10]. Here, we propose an
ASP-based model revision approach for the Boolean logical formalism, with four
possible causes for model inconsistency and the corresponding repair operations.

The paper is organised as follows. Section 2 describes the logical formalism
applied to biological regulatory networks. Section 3 describes the model revision
process and the proposed repair operations. The proposed approach is presented
in Sect. 4. The implemented tool is evaluated on five well-known biological models
in Sect. 5. Section 6 presents the conclusion and future prospects.

2 Logical Regulatory Networks

Biological regulatory networks are usually represented by a directed graph
G = (V,E), known as regulatory graph. In a regulatory graph, nodes represent
the set of components V and the set of edges E ⊆ {(u, v, t) : u, v ∈ V ; t ∈ {−,+}}
represent regulatory interactions. If the regulatory graph has an edge from vi to
vj , then vi is said to be a regulator of vj . We can associate a sign t to each edge
representing a positive interaction (activation) or a negative interaction (inhi-
bition). Such regulatory graphs define the topology/structure of the network,
lacking information on the components regulatory rules.

2.1 Logical Model

A logical model of a regulatory network is defined by a tuple (V,K), where
V = {v1, v2, . . . , vn} is the set of n regulatory components of the network, where
each vi is associated with an integer value in Di = {0, . . . ,maxi}, representing
the component concentration level. A state of the network is thus defined as a
vector s ∈ S =

∏
vi∈V Di. Then K = {K1,K2, . . . ,Kn} is the set of n regulatory

functions where Ki is the regulatory function of vi and Ki : S → Di.
In this work, we consider only Boolean logical models with ∀i maxi = 1, i.e.,

each components of the network is represented by a Boolean value, meaning that
the component is either present (active) or absent (inactive).

102 F. Gouveia et al.

2.2 Boolean Functions

Let B be the set {0, 1} and Bn be the n-dimensional cartesian product of the
set B. Given (x1, . . . , xn) ∈ Bn, a Boolean function f : Bn → B is positive (resp.
negative) in xi if f |xi=0 ≤ f |xi=1 (resp. xi if f |xi=0 ≥ f |xi=1). Function f is
monotone if it is either positive or negative for every xi [2].

A monotone Boolean function f can be represented in Disjunctive Normal
Form (DNF) [2], where a DNF formula is a disjunction of terms where each term
is a conjunction of literals [1], and each variable xi appears always as a positive
literal (xi) if f is positive in xi, or it always appears negated (¬xi) otherwise. In
other words, each component regulating another component either has a positive
(resp. negative) interaction always appearing as a positive (resp. negated) literal
in the DNF of the regulatory function.

A nondegenerate Boolean function is a function that depends on all of its
variables, i.e., all variables have an impact on its result. More formally, a function
f is nondegenerate if all of its variables are essential. A variable xi is essential for
f if f |xi=0(X) �= f |xi=1(X) for some X ∈ Bn−1, and is inessential otherwise [21].

In this work, we restrict the domain of the regulatory functions to the set of
monotone nondegenerate Boolean functions.

2.3 Dynamics

From a given initial state of the network, the value of a component can be
updated following its regulatory function, and every component can potentially
change its value at any given time. The generation of successors of each state
can follow: a synchronous update policy, where every component is called to
update their value simultaneously, yielding a single state successor; an asyn-
chronous update policy, where the state has a distinct successor for each com-
ponent changing its value; among other update policies (see [5] for details).

The generated dynamics is represented by a State Transition Graph (STG),
where each node corresponds to a state of the network, and each edge represents
a possible transition between states. A key property of interest is the identi-
fication of attractors in the STG, which typically denote subsets of states of
biological interest [11]. There are two types of attractors: complex and point
attractors. Complex attractors are sets of mutually reachable states defined as
terminal Strongly Connected Components (SCC). If an SCC has a single state,
it is denoted a point attractor or stable state, i.e. a state without a transition
to any other state in the STG.

In this work, we focus on the set of point attractors (stable states) of the
Boolean logical model.

3 Model Revision

Models of biological regulatory networks are not always in line with existing
experimental observations, i.e., the model cannot explain some experimental

Model Revision of Boolean Regulatory Networks at Stable State 103

Table 1. Causes of inconsistency and corresponding repair operations. Class F stands
for function repair and class T stands for topology repair.

Type Cause Repair operation Class

1 Wrong regulatory function Function change F

2 Wrong interaction type Edge sign flip T

3 Wrong regulator Edge removal T

4 Missing regulator Edge addition T

observations. In this case, we say that the model is inconsistent and must be
revised and updated.

We consider a model to be consistent, if all its nodes are consistent. A given
node is consistent if the value given by its regulatory function is the same as the
one given by the experimental observation (if available). Otherwise, it is incon-
sistent. In the following, we consider all the model stable states as experimental
observations.

Given a Boolean logical model, we define four possible causes for incon-
sistency and the corresponding repair operations as shown in Table 1. Repair
operations can be classified as function repairs (class F) thus changing the reg-
ulatory functions or as topology repairs (class T) thus changing the topology of
the regulatory graph.

In the following we describe in detail the repair operations defined as well
as the complete model revision procedure, defining a preference order on the
proposed repairs of Table 1. In particular, we assume that the domain expert
has a higher level of confidence in the correctness of the network topology than
in the regulatory functions of the model. We therefore give preference to the use
of class F rather than class T repairs.

3.1 Function Repair

The definition of logical models still relies on domain experts to choose the best
functions for every network component. However, given a component with k

regulators, there are 22
k

possible Boolean functions to choose from, rendering
this manual process prone to error. In this work, we restrict the function space to
the set of monotone nondegenerate Boolean functions, which still yields a large
number of functions to choose from, as a function of k.

Let f and f ′ be two monotone nondegenerate Boolean functions in Bn → B,
with the relation 	 being defined as:

f 	 f ′ ⇐⇒ f(X) ⇒ f ′(X). (1)

A partial order set (POset) is then defined by the set of all monotone non-
degenerate Boolean functions in Bn → B and the relation 	 [2,3], and is repre-
sented by an Hasse diagram (see Fig. 3). Considering the partial order relation

104 F. Gouveia et al.

v1 v2

v3 v4

fv1 = v2

fv2 = ¬v1 ∧ v4

fv3 = v1 ∨ (v2 ∧ ¬v4)

1 0

0 0

Fig. 1. Inconsistent logical model
(Color figure online).

v1 v2

v3 v4

fv1 = ¬v2

fv2 = ¬v1 ∧ v4

fv3 = (v1 ∧ v2) ∨ (v2 ∧ ¬v4)

1 0

0 0

Fig. 2. Repaired logical model (Color
figure online).

between functions, we rely on the work proposed by Cury et al. [3] to compute the
functions with minimal impact to the original one, i.e., their immediate neigh-
bours. In Cury et al. [3] a set of rules is proposed to compute the father/children
of a given function f without the need to compute the whole function space.
Given two functions f and f ′, f ′ is a father of f if and only if f 	 f ′ and �f ′′

such that f 	 f ′′ and f ′′ 	 f ′. In this case f is said to be a child of f ′.
When a function is inconsistent with the experimental observations, we first

determine whether it is necessary to generalize the function (go up in the Hasse
diagram), or specify the function (go down in the Hasse Diagram). If it is nec-
essary to generalize (resp. specify) the function, we compute the set of fathers
(resp. children) of the function. We continue to go up (resp. down) the diagram
if none of the fathers (resp. children) is consistent.

3.2 Topology Repair

Changing regulatory functions may not suffice to make a model consistent. In
this case, it may be necessary to (also) change the topology of the network. Here,
we consider three topology-changing repair operations: flip the sign of an edge;
remove an edge; and add an edge.

Flipping the sign of an edge changes the role of a single regulator. Since
we consider the set of monotone nondegenerate Boolean functions, there are no
dual regulators, i.e. regulators acting both as activators and as inhibitors. Thus,
a negative regulator (inhibitor) becomes a positive regulator (activator) and
vice-versa. By adding (resp. removing) an edge, we are adding (resp. removing)
regulators from the Boolean function, which effectively changes its dimension
which will likely have a greater impact than a function repair.

3.3 Repairing a Model

A model is considered inconsistent and deemed to be repaired if there is at least
one inconsistent node. A node is inconsistent with some observational data if
the expected value of the node differs from the node value evaluated by the
corresponding regulatory function. Here, we consider the model’s stable states
as the observational data.

Figure 1 shows an example of an inconsistent model. The experimental obser-
vation is next to each node in the graph. This model with the corresponding

Model Revision of Boolean Regulatory Networks at Stable State 105

observations has two inconsistent nodes: v1 and v3. For example, node v1 is only
positively regulated by v2 (which has an observed value of 0), and therefore, the
function of v1 evaluates to 0, but the experimental observation of v1 is 1.

There might be many reasons for a node to be inconsistent. To render a node
consistent, one tries first to repair the function before considering any topological
change in the network. This allows to search for possible repairs in the dimension
of the current function before expanding the search space considering different
function dimensions. The ordering is therefore as follows:

1. Repair the function;
2. Flip the sign of an edge;
3. Add/remove an edge.

In Fig. 1, node v3 is inconsistent and different (function and topological)
repair operations can be applied. There are 9 monotone nondegenerate Boolean
functions with 3 regulators (see Fig. 3). Each of the 3 incoming edges can flip their
sign. Also, we can remove any of the 3 incoming edges or add the missing edge
from node v3 to itself. If we consider the addition and removal of edges, which
changes the search space of the Boolean functions, and that we can apply any
combination of repair operations, we obtain a set of 2087 possible combinations
of repair operations. Since models of regulatory networks typically have more
than 4 nodes, the number of repair operations clearly explodes.

We start by first determining the minimum number of inconsistent nodes, to
determine the solution with the minimum number of topology repairs. Therefore,
first we try to repair a node by changing the regulatory function. If changing
the function is not sufficient to make the model consistent we then proceed
with topological repairs incrementally. We start by considering applying one
topological repair operation, flipping the sign of an edge, for each possible edge.
Then we consider applying two topology repair operations, and so on, until no
more operations are possible. Whenever a topology repair operation is applied,
the regulatory function must be verified for inconsistency again, and a function
repair operation is most likely necessary.

Figure 2 shows the repaired model of Fig. 1, where the edge from v2 to v1
flipped the sign, making node v1 consistent, and the regulatory function of v3
changed, making node v3 consistent. This is an optimal model repair with mini-
mum topology changes. Figure 3 shows the Hasse diagram for the set of monotone
nondegenerate Boolean functions of node v3. Marked in blue (dark grey) is the
original function of v3 (Fig. 1) and marked in green (light grey) is the regulatory
function of v3 after the repair (Fig. 2).

4 Approach

In this section, we describe the approach for the revision of Boolean logical
models considering the set of repair operations proposed in Sect. 3.

As previously mentioned, one must first determine if a model contains incon-
sistencies in order to repair it. In previous work, we proposed an Answer Set

106 F. Gouveia et al.

(v1 ∧ v2) ∨ (v1 ∧ ¬v4) ∨ (v2 ∧ ¬v4)

(v1) ∨ (v2 ∧ ¬v4) (v2) ∨ (v1 ∧ ¬v4) (¬v4) ∨ (v1 ∧ v2)

(v1 ∧ v2) ∨ (v2 ∧ ¬v4) (v2 ∧ ¬v4) ∨ (v1 ∧ ¬v4) (v1 ∧ ¬v4) ∨ (v1 ∧ v2)

(v1) ∨ (v2) ∨ (¬v4)

(v1 ∧ v2 ∧ ¬v4)

more generic

more specific

Fig. 3. Hasse diagram for monotone nondegenerate Boolean functions of three regula-
tors (arguments v1, v2, and ¬v4).

Programming (ASP) [7] program to verify the consistency of a model given a
set of experimental observations [9]. As previously stated, in this work, we con-
sider the model corresponding stable states, i.e., we do not consider the model
dynamics between specific states.

Given a model, a set of experimental observations, and a set of inconsis-
tencies, we developed a procedure to try to repair the model using the repair
operations in Table 1.

We start by verifying the consistency of the model, using the previously
developed ASP program [9]. If the model is consistent with the data, no revision
is necessary. In case of an inconsistent model, our ASP program returns the
minimum number of nodes that are inconsistent, i.e., the minimum number
of nodes to which no value can be assigned. We call these nodes inconsistent
nodes. Moreover, since we give preference to the repair of regulatory functions,
as described in Sect. 3, we retrieve additional information from the ASP program
regarding the inconsistent nodes. We define two possible reasons of inconsistency:
the regulatory function of an inconsistent node needs to be either more specific
or more generic. For example, if a regulatory function for a given node produces
a 0 (resp. 1) but the value of the node should be 1 (resp. 0) in order for the
node to be consistent, it is likely that a more generic (resp. specific) regulatory
function is needed. These reasons for inconsistent do not imply that we can
repair a model by only changing the regulatory function, but give us a direction
to search for possible repairs.

The proposed procedure determines the minimum repair operations necessary
to make the model consistent, using a lexicographic optimization criterion with
the following order:

1. Minimize the number of add/remove edge operations;
2. Minimize the number of flip sign of an edge operations;
3. Minimize the number of change regulatory function operations.

This order of optimization gives preference to applying changes to the regulatory
functions over any topological change.

Model Revision of Boolean Regulatory Networks at Stable State 107

As an example, let us consider an inconsistent model with a single inconsis-
tent node. To determine the optimum solutions (i.e., minimal repair operations
to be applied), we start by trying to change the regulatory function of the incon-
sistent node, by replacing it either by a more generic or a more specific one,
according to the corresponding reason of inconsistency. This is performed using
an ASP program to compute the immediate neighbours (fathers or children) of
a given monotone nondegenerate Boolean function, considering the set of rules
proposed by Cury et al. [3].

Using this ASP program, our procedure computes all the fathers (resp. chil-
dren) of the regulatory function. If none of the fathers (resp. children) is consis-
tent, it is computed the corresponding fathers (resp. children), until it finds either
a consistent function or there are no more functions. This approach guarantees
that, if a function repair operation can be applied, then the original function is
modified to (one of) the nearest function(s) in the Hasse diagram that is consis-
tent with the experimental data, i.e. having less differences in the truth table.
If no function is found, it proceeds to change the regulatory graph topology.
In the first stage, it tries to change only the sign of the incoming edges of the
inconsistent node. For each attempt of flipping the sign of an edge operation, it
calculates all the possible function changes again. Then, if flipping the sign of a
single edge is not enough to make a model consistent, it considers combinations
of two edges, and so on until all the edges are considered. If no solution is found,
the procedure advance to the next state of topological changes, by repeating
this process considering adding or removing one edge. If the model is still not
consistent, then considers the same process with two edges, and so on until no
more edges can be added or removed.

This process is applied to every inconsistent node. Remember that we con-
sider only the model stable states as experimental data, and thus repairing the
consistency of one node does not impact the consistency of other nodes.

Even though we do not have to compute the complete Hasse diagram of all
possible functions for a given n, the computation of the fathers/children of a
given function still greatly increases with n. Therefore, we limit all regulatory
functions to a maximum of 12 regulators, since most models have regulatory
functions with an average of 3 regulators and no more than 8 (see Table 2).

Also, we can only repair a model if an inconsistent node has a single reason
for its inconsistency: it either needs to be more specific or more generic, but
not both simultaneously. If a function would need to be more specific in one
experimental observation and more generic in another observation, in order to
repair the model we would have to consider the set of all monotone nondegenerate
functions. Here, we only consider the set of monotone nondegenerate functions
that are comparable with the original function. Having this limitation allows for
a reduction of the search space when repairing a function.

Finally, we developed a tool in C++1, with the behaviour illustrated in Fig. 4.
Given a logical model and a set of experimental observations, the tool decides
whether the input is satisfiable. The input is said to be satisfiable either if it is
consistent or if a repair can be found. Otherwise it is unsatisfiable.

1 Tool available at http://sat.inesc-id.pt/∼joaofrg/ISBRA2019/model revision.zip.

http://sat.inesc-id.pt/~joaofrg/ISBRA2019/model_revision.zip

108 F. Gouveia et al.

Model
+

Exp. Obs.

(C++)

Check
Inconsistency

(ASP)

Inconsistencies

Consistent

Not possible to repair

Search Repairs

(C++)

Calculate Neighbour Functions
(ASP)

Unsatisfiable

Consistent

Solutions

Repairs
. . .

Repairs

Fig. 4. Diagram of the developed tool. Model and experimental observations are the
input of the tool. The tool produces as output all the optimal sets of repair operations.
Marked in dashed arrows are alternative flows, where the model is consistent (no need
of repair), or it is not possible to repair (no repairs produced). In yellow are represented
the ASP components of the tool, and in white are the C++ components (Color figure
online).

Table 2. Boolean logical models considered for evaluation with corresponding: used
abbreviation (Abbr.), number of nodes (#Nodes), number of edges (#Edges), number
of stable states (#SS), average number of regulators per node (Avg.Reg.), maximum
number of regulators (M.Reg.), and bibliographic reference (Ref.).

Abbr. Model #Nodes #Edges #SS Avg.Reg. M.Reg. Ref.

FY Fission yeast 10 27 12 3 5 [4]

SP Segment polarity (1 cell) 19 57 7 3 8 [19]

TCR TCR signalisation 40 57 7 1, 425 5 [13]

MCC Mammalian cell cycle 10 35 1 3, 5 6 [5]

Th Th cell differentiation 23 35 3 1, 842 5 [14]

Additionally, we provide a few options to the user. First, we allow the user
to prevent some repair operations. Second, the user can define nodes as fixed
nodes, preventing them from being considered inconsistent. We also allow the
user to define some edges as fixed, preventing solutions with repair operations
that change the sign or remove fixed edges.

5 Evaluation

In order to evaluate the proposed approach, we considered a set of five known
logical models representative of different processes and organisms (see Table 2):
the cell-cycle regulatory network of fission yeast by Davidich and Bornholdt [4];
the segment polarity network which plays a role in the fly embryo segmentation
by Sanchèz et al. [19]; the T-Cell Receptor (TCR) signaling network by Klamt
et al. [13]; the core network controlling the mammalian cell cycle by Fauré et
al. [5]; and the regulatory network controlling T-helper cell differentiation by
Mendoza and Xenarios [14].

Model Revision of Boolean Regulatory Networks at Stable State 109

Table 3. Results for FY, SP, TCR, MCC and Th. F%, E%, R%, and A% are the
probabilistic parameters used to change the original model. Time (T), in seconds,
is the median of time for the solved instances. #TO is the number of timeouts. 10
instances were considered per configuration per model.

(%) FY SP TCR MCC Th

F E R A T (s) #TO T (s) #TO T (s) #TO T (s) #TO T (s) #TO

5 0 0 0 0,034 0 0,036 0 0,047 0 0,021 0 0,028 0

25 0 0 0 0,059 0 4,734 0 0,063 0 0,021 0 0,061 0

50 0 0 0 0,060 0 14,003 2 0,097 0 0,033 0 0,677 0

100 0 0 0 0,072 0 18,937 2 0,129 0 0,046 0 0,751 0

0 5 0 0 0,070 0 0,105 0 0,050 0 0,033 0 0,061 1

0 10 0 0 0,070 0 1,566 1 0,050 0 0,101 0 0,044 0

0 15 0 0 0,035 1 0,168 3 0,050 0 0,039 0 0,051 1

0 20 0 0 0,071 2 0,284 4 0,050 0 0,136 0 0,062 1

0 0 1 0 0,034 0 0,635 0 0,045 0 0,020 0 0,025 1

0 0 5 0 0,069 0 5,021 1 0,046 0 0,020 0 0,026 1

0 0 10 0 0,095 2 24,481 4 0,060 0 0,019 0 0,589 2

0 0 15 0 0,083 2 32,896 3 7,106 0 0,029 0 1,613 2

0 0 0 1 0,874 0 0,130 2 0,152 0 0,020 0 0,028 3

0 0 0 5 0,096 0 42,684 7 2,518 3 0,219 0 0,497 8

0 0 0 10 0,842 1 - 10 - 10 0,234 1 - 10

0 0 0 15 6,003 4 - 10 - 10 0,622 0 258,022 9

25 5 0 0 0,062 0 5,358 0 0,063 0 0,032 0 0,108 0

50 25 0 0 0,127 2 13,989 4 0,187 0 0,570 0 0,724 1

5 25 5 5 0,453 4 - 10 3,979 8 0,549 1 0,781 9

10 10 5 5 0,601 2 24,637 8 50,662 6 0,142 1 0,745 7

We developed a tool to make a set of random changes to a logical model
according to four given probabilistic parameters. Our goal was to change a logical
model, and then assess the repairing capabilities of the proposed tool to make the
model consistent again. The set of four probabilistic parameters were considered:
changing a function (F%); changing the sign of an edge (E%); removing an
existing edge (R%); and adding a missing edge (A%).

We changed each model with several parameters configurations, and consid-
ered 10 instances per configuration per model (see Table 3). We considered gen-
erating instances where only the functions were changed, simulating cases where
the topology of the network is correct. We also considered instances where only
the sign of the edges was changed, instances where we only removed edges, and
instances where only were added new edges. We generated instances with more
functions changes than topology changes, since we assume greater confidence in
the correctness of the topology than of the regulatory functions.

Due to the limitations of our tool, we only considered instances that have
regulatory functions with less than 12 regulators, and instances with a single
reason for inconsistency per node (as described in Sect. 4). We also only consid-

110 F. Gouveia et al.

ered instances different from the original models, i.e., instances where at least
one change was applied. All experiments were run on an AMD Opteron(TM)
1.4 GHz 32-core Linux machine, with a time limit of 600 s.

Table 3 presents the results of our tool applied to different models (FY, SP,
TCR, MCC, and Th) and different changes. The time is presented in seconds
and corresponds to the median of times of solved instances. Whenever the model
repair was possible under the time limit, the tool successfully repaired the model
with a less or equal number of repair operations than the number of changes
applied to the original model.

Table 3 shows that most of the repaired models can be repaired under 60 s. It
is also possible to verify that changing the topology of the network has a bigger
impact, increasing the number of timeouts as the number of changes increases.
Perturbing the model with the addition of new edges has a bigger impact in the
model revision process than the removal of edges. This is due to the dimension
increase of the regulatory function, which greatly increases the search space for
possible function repairs.

Comparing the results for the SP and TCR models we can observe that,
although the TCR model is composed of more nodes (40) than SP model (19),
repairing the SP model takes more time in general, for the same number of
edges (57). This means that the latter has a more interconnected network, with
regulatory functions depending on a higher number of regulators. The dimension
of the regulatory function greatly impacts the performance of our tool, since the
number of monotone nondegenerate Boolean functions to be considered increases
with a double exponential with the number of regulators.

6 Conclusion and Future Work

In this work we propose a logical model revision tool without considering dynam-
ics. We use ASP to verify the consistency of a model and retrieve useful informa-
tion in case of inconsistency, and compute possible regulatory functions replace-
ment candidates. And C++ to search the set of repair operations. Four repair
operations are proposed: regulatory function change; edge sign flipping; edge
addition; and edge removal. Our tool receives as an input a logical model and
a set of experimental observations, and produces sets of repair operations to
render the model consistent, under an optimization criteria (Sect. 4).

The tool was successfully tested using several well-known biological models,
being able to repair most of the instances under 60 s. We were able to conclude
that the dimension of the regulatory functions has the biggest impact on the tool
performance, since the number of monotone nondegenerate Boolean functions
increases.

As a future work, time-series data could be used to also consider the model
dynamics. Also, the possibility to repair models with inconsistent nodes with
multiple reasons for inconsistency (see Sect. 4 for more details). The proposed
tool produces all the optimal solutions to repair a model. Heuristics could be
used to reduced the number of solutions produced (see [15] for details).

Model Revision of Boolean Regulatory Networks at Stable State 111

References

1. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS
Press, Amsterdam (2009)

2. Crama, Y., Hammer, P.L.: Boolean Functions: Theory, Algorithms, and Applica-
tions. Cambridge University Press, Cambridge (2011)

3. Cury, J.E., Monteiro, P.T., Chaouiya, C.: Partial Order on the set of Boolean
Regulatory Functions. arXiv preprint arXiv:1901.07623 (2019)

4. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence
of fission yeast. PLoS ONE 3(2), e1672 (2008)

5. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic
Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14),
e124–e131 (2006)

6. Gebser, M., et al.: Repair and prediction (under inconsistency) in large biological
networks with answer set programming. In: KR (2010)

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in prac-
tice. Synth. Lect. Artif. Intell. Mach. Learn. 6(3), 1–238 (2012)

8. Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large
biological networks with answer set programming. TPLP 11(2–3), 323–360 (2011)

9. Gouveia, F., Lynce, I., Monteiro, P.T.: Model revision of logical regulatory net-
works using logic-based tools. In: ICLP 2018 (Technical Communications). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

10. Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfi-
ability. In: Milano, M. (ed.) CP 2012. LNCS, pp. 941–956. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 67

11. Hopfensitz, M., Müssel, C., Maucher, M., Kestler, H.A.: Attractors in Boolean
networks: a tutorial. Comput. Stat. 28(1), 19–36 (2012)

12. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks.
Nat. Rev. Mol. Cell Biol. 9(10), 770 (2008)

13. Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Gilles, E.D.: A method-
ology for the structural and functional analysis of signaling and regulatory net-
works. BMC Bioinform. 7(1), 56 (2006)

14. Mendoza, L., Xenarios, I.: A method for the generation of standardized qualita-
tive dynamical systems of regulatory networks. Theor. Biol. Med. Model. 3(1), 13
(2006)

15. Merhej, E., Schockaert, S., De Cock, M.: Repairing inconsistent answer set pro-
grams using rules of thumb: a gene regulatory networks case study. Int. J. Approx.
Reason. 83, 243–264 (2017)

16. Monteiro, P.T., Ropers, D., Mateescu, R., Freitas, A.T., De Jong, H.: Temporal
logic patterns for querying dynamic models of cellular interaction networks. Bioin-
formatics 24(16), i227–i233 (2008)

17. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: Dynamically consistent reduction
of logical regulatory graphs. Theor. Comput. Sci. 412(21), 2207–2218 (2011)

18. Paulevé, L.: Reduction of qualitative models of biological networks for transient
dynamics analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 15, 1167–1179
(2017)

19. Sánchez, L., Chaouiya, C., Thieffry, D.: Segmenting the fly embryo: logical analysis
of the role of the segment polarity cross-regulatory module. Int. J. Dev. Biol. 52(8),
1059–1075 (2002)

http://arxiv.org/abs/1901.07623
https://doi.org/10.1007/978-3-642-33558-7_67

112 F. Gouveia et al.

20. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3),
563–585 (1973)

21. Wegner, I.: The critical complexity of all (monotone) Boolean functions and mono-
tone graph properties. Inf. Control. 67(1–3), 212–222 (1985)

	Model Revision of Boolean Regulatory Networks at Stable State
	1 Introduction
	2 Logical Regulatory Networks
	2.1 Logical Model
	2.2 Boolean Functions
	2.3 Dynamics

	3 Model Revision
	3.1 Function Repair
	3.2 Topology Repair
	3.3 Repairing a Model

	4 Approach
	5 Evaluation
	6 Conclusion and Future Work
	References

