Model revision of logical regulatory networks using logic-based tools

Abstract

Recently, biological data has been increasingly produced calling for the existence of computational models able to organize and computationally reproduce existing observations. In particular, biological regulatory networks have been modeled relying on the Sign Consistency Model or the logical formalism. However, their construction still completely relies on a domain expert to choose the best functions for every network component. Due to the number of possible functions for k arguments, this is typically a process prone to error. Here, we propose to assist the modeler using logic-based tools to verify the model, identifying crucial network components responsible for model inconsistency. We intend to obtain a model building procedure capable of providing the modeler with repaired models satisfying a set of pre-defined criteria, therefore minimizing possible modeling errors.

Type
Publication
In Technical Communications of the 34th International Conference on Logic Programming
Filipe Gouveia
Filipe Gouveia
Computer Science Researcher

My research interests include artificial intelligence, computational logic and automated reasoning.