

Logic-Based Encodings for Ricochet Robots

Filipe Gouveia, Pedro T. Monteiro, Vasco Manquinho, Inês Lynce

{filipe.gouveia,pedro.tiago.monteiro,vasco.manquinho,ines.lynce}@tecnico.ulisboa.pt

INESC-ID / Instituto Superior Técnico University of Lisbon Lisbon, Portugal

September 2017

Table of Contents

Ricochet Robots

Motivation Introduction Problem Specification

Encodings

Base Model Boolean Encoding Other Logic-Based Encodings

Experimental Evaluation

Conclusions Future Work

Table of Contents

Ricochet Robots

Motivation Introduction Problem Specification

Encodings

Base Model Boolean Encoding Other Logic-Based Encodings

Experimental Evaluation

Conclusions Future Work

Motivation

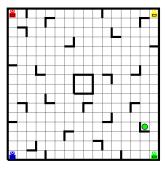
- Puzzles and games were always interesting for Artificial Intelligence
 - ▶ N-Queens, Towers of Hanoi, Sudoku, ...
- Answer Set Programming approaches exist
- Real board game and mobile apps

Introduction

Simple board game, created by Alex Randolph in 1999 Also known as *Rasende Roboter* or *Randolph's Robots*

Content:

- 16 by 16 grid (256 positions), with some barriers
- 4 robots with different colors
- A goal position for a given robot



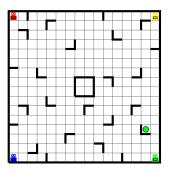
Introduction

Rules:

- Only one robot moves at a time
- Robots can only move horizontally or vertically
- Once a robot starts moving, it only stops when it reaches a barrier or another robot

Goal:

 Put the correspondent robot in target position



Problem Specification

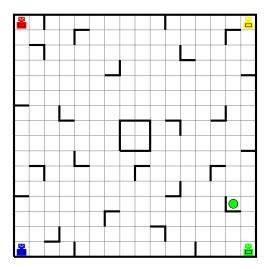
It is easy to find a solution for the game

But it is not easy to find an **optimal** solution! (NP-Hard)

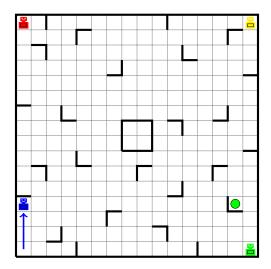
An optimal solution is one with the least amount of moves

Our goal: Find one optimal solution for a given starting configuration and a target position

Example

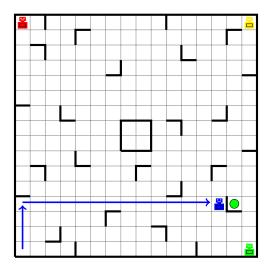


Example



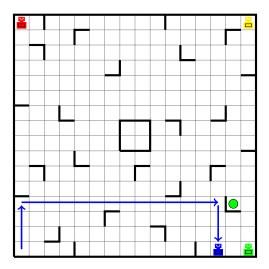
↑

Example



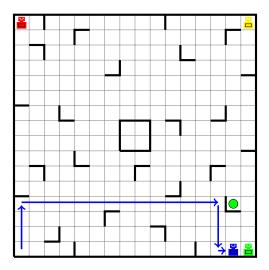
↑ →

Example



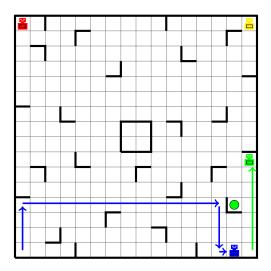
 $\uparrow \rightarrow \downarrow$

Example



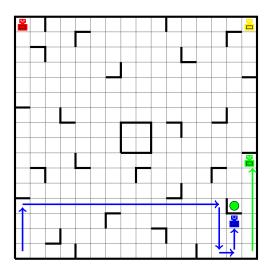
 $\boldsymbol{\wedge} \boldsymbol{\rightarrow} \boldsymbol{\vee} \boldsymbol{\rightarrow}$

Example



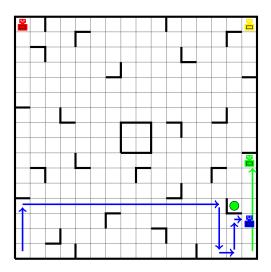
 $\uparrow \rightarrow \downarrow \rightarrow \uparrow$

Example

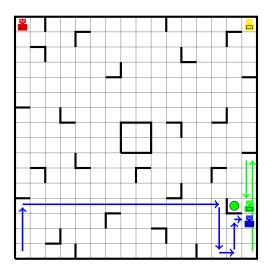


 $\uparrow \rightarrow \downarrow \rightarrow \uparrow \uparrow$

Example

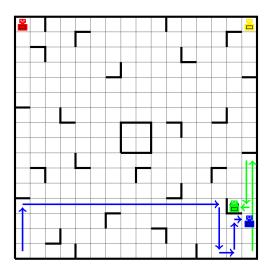


Example



 $\land \rightarrow \checkmark \rightarrow \land \land \rightarrow \checkmark$

Example



 $\land \rightarrow \lor \rightarrow \land \land \rightarrow \lor \leftarrow$

Table of Contents

Ricochet Robots

Motivation Introduction Problem Specification

Encodings

Base Model Boolean Encoding Other Logic-Based Encodings

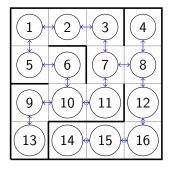
Experimental Evaluation

Conclusions Future Work

Board represented as a graph

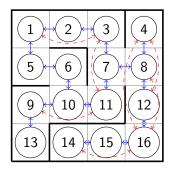
Encodings Base Model

- Board represented as a graph
- Each position is a vertex
- Adjacent positions with no barriers are connected by an edge



Encodings Base Model

- Board represented as a graph
- Each position is a vertex
- Adjacent positions with no barriers are connected by an edge
- An extended edge is added between a position and each other position in the same row or column iff there are no barriers between them



- A CNF formula is a conjunction (\land) of clauses
- A clause is a disjunction (\lor) of literals
- A literal is a Boolean variable or its negation

$$(x_1 \lor x_2) \land (x_3 \lor \neg x_1) \land \neg x_4$$

- ▶ A CNF formula is a conjunction (∧) of clauses
- A clause is a disjunction (\lor) of literals
- A literal is a Boolean variable or its negation

$$(x_1 \lor x_2) \land (x_3 \lor \neg x_1) \land \neg x_4$$

- ▶ A CNF formula is a conjunction (∧) of clauses
- ► A clause is a disjunction (∨) of literals
- A literal is a Boolean variable or its negation

$$(x_1 \lor x_2) \land (x_3 \lor \neg x_1) \land \neg x_4$$

- ▶ A CNF formula is a conjunction (∧) of clauses
- A clause is a disjunction (\lor) of literals
- A literal is a Boolean variable or its negation

$$(x_1 \lor x_2) \land (x_3 \lor \neg x_1) \land \neg x_4$$

Variables

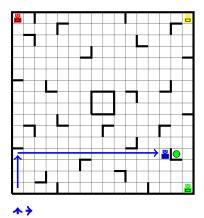
Consider a graph G = (V, E) representing a $d \times d$ board:

- ▶ Set of vertexes $V = \{v_1, v_2, ..., v_n\}$, where $n = d \times d$
- *E* is the set of *extended edges*
- Set of μ robots $R = \{r_1, r_2, ..., r_{\mu}\}$
- Number of time steps $\eta \in \mathbb{N}_0$

Variables

Propositional variables:

- X^t_{j,k} Position variable
 X²_{206,blue} is true
- Poss^t_{j,l} Possible movement variable
 - ► *Poss*¹_{193,206} is true
- *M^t_k* Movement variable
 M¹_{blue} is true



Boolean Encoding Rules

- Represent the initial state of the board
 - Each robot k is in its initial position v_j at time 0

 $X_{j,k}^0$

• The goal state of robot k is position v_j

 $X_{j,k}^\eta$

Boolean Encoding Rules

- Robot placement at each time step
 - A robot must be in at least one vertex

$$\bigvee_{j=1}^n X_{j,k}^t$$

A robot cannot be in two vertexes

$$\bigwedge_{j=1}^n \bigwedge_{l=j+1}^n \neg X_{j,k}^t \lor \neg X_{l,k}^t$$

Rules

A robot either stays in the same vertex v₁ or comes from a vertex v_j, such that (v_j, v_l) ∈ E, from which a movement is possible

$$X_{l,k}^{t+1} \implies X_{l,k}^t \lor \bigvee (X_{j,k}^t \land \textit{Poss}_{j,l}^t \land M_k^t)$$

A movement is possible if there are no robots along the way

$$Poss_{j,l}^{t} \implies \bigwedge_{h \in p(j,l)} \bigwedge_{k=1}^{\mu} \neg X_{h,k}^{t}$$

p(j, l) denotes the vertexes in the path from v_j to v_l

Rules

A vertex is a *stop* vertex for a given direction if there is a robot in the following vertex

$$\textit{Poss}_{j,l}^t \implies \bigvee_{k=1}^{\mu} X_{m,k}^t$$

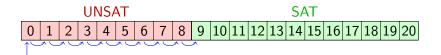
 v_m represents the next vertex adjacent to v_l considering the direction from v_i to v_l

Only one robot can move at each time step

$$\bigwedge_{k=1}^{\mu} \bigwedge_{h=k+1}^{\mu} \neg M_k^t \lor \neg M_h^t$$

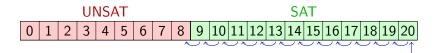
Optimal Solution

- Presented encoding allows to check if there is a solution for a given time step limit.
- It is possible to find, using a SAT solver, an optimal solution using an iterative approach:
 - UNSAT SAT
 - Start with $\eta = 0$
 - If unsatisfiable, increment η by 1 and repeat
 - The first satisfiable solution is an optimal solution



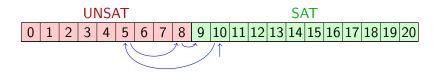
Optimal Solution

- Presented encoding allows to check if there is a solution for a given time step limit.
- It is possible to find, using a SAT solver, an optimal solution using an iterative approach:
 - ► SAT UNSAT
 - Start with $\eta = 20$ (or another large value)
 - If satisfiable, decrement η by 1 and repeat
 - The last satisfiable solution is an optimal solution



Optimal Solution

- Presented encoding allows to check if there is a solution for a given time step limit.
- It is possible to find, using a SAT solver, an optimal solution using an iterative approach:
 - Binary Search
 - Start with LB = 0, UB = 20, and average η_{avg}
 - If unsatisfiable, update $LB = \eta_{avg} + 1$, otherwise $UB = \eta_{avg}$
 - Stop when lower bound is equal to upper bound



Encodings Other Logic-Based Encodings

Other logic-based tools were used:

Satisfiability Modulo Theories (SMT)

Constraint Programming (CP)

Other Logic-Based Encodings SMT

Implementation of the Boolean encoding presented

- Other encodings have been tried
 - > The Boolean encoding was the best performing encoding

```
Other Logic-Based Encodings
```

Encoding developed with *MiniZinc* CP Solver

Integer variables

- Each position is represented by two integers
 - Row
 - Column

Table of Contents

Ricochet Robots

Motivation Introduction Problem Specification

Encodings

Base Model Boolean Encoding Other Logic-Based Encodings

Experimental Evaluation

Conclusions Future Work

Experimental Evaluation

 Proposed encodings were compared with previous proposed Answer Set Programming (ASP) approaches

Instances:

- Board 16 × 16 (256 positions)
- 4 robots starting at each corner of the board
- Each instance is one of the (256) possible positions for the target, for the same robot
- 600 seconds of CPU time limit

Experimental Evaluation

Tools and Approaches

Tools:

- Glucose SAT Solver
- z3 SMT Solver
- MiniZinc with the Gecode solver provided
- Approaches:
 - Iterative algorithms:
 - Linear UNSAT-SAT search
 - Linear SAT-UNSAT search
 - Binary search
 - Incremental and non-incremental implementations were considered
 - Native optimization directive considered in CP encoding

Results

ASP vs. SAT

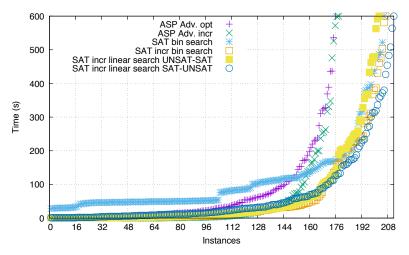


Figure: Time comparison (in seconds) between ASP Advanced encodings and SAT encoding

Results Other Logic-Based Encodings

> Worse than ASP and SAT Encodings in terms of number of instances solved

- CP approach solves 4 to 5 times fewer instances than SAT and ASP approaches
 - Solved instances required less CPU time

Table of Contents

Ricochet Robots

Motivation Introduction Problem Specification

Encodings

Base Model Boolean Encoding Other Logic-Based Encodings

Experimental Evaluation

Conclusions Future Work

Conclusions

- New logic-based encodings proposed
- Proposed Boolean Encoding solved a larger set of instances than the previously published ASP encodings
 - Incremental linear search SAT-UNSAT is the most efficient
- SMT and CP approaches may still be improved
 - looks like there is no straightforward approach performing better than SAT or ASP encodings

Future Work

Explore MaxSAT approaches

Apply planning tools

Extend the current encodings to similar problems

Thank you!

Questions?

Results ASP vs. SAT - decision problem

Table: Average time results for decision problem in seconds, considering a limit of 20 time steps. The timeouts were not considered when computing the average time.

	Average Time (s)	#Timeouts
ASP Plain	252,38	51
ASP Advanced	34,95	20
SAT	42,98	3

Table: Average time (in seconds) of solved instances.

	Time (s)	#Timeouts
ASP Advanced optimization	59,34	81
ASP Advanced incremental	41,84	79
SAT using binary search	108,37	51
SAT using linear search (UNSAT-SAT)	123,01	62
SAT using incremental binary search	56,79	50
SAT using incremental linear search (UNSAT-SAT)	57,43	54
SAT using incremental linear search (SAT-UNSAT)	66,27	45

Results

Other Logic-Based Encodings

Table: Average time (in seconds) of solved instances.

	Time (s)	#Timeouts
SMT incremental using linear search (UNSAT-SAT)	137,88	86
SMT incremental using linear search (SAT-UNSAT)	312,07	94
SMT incremental using binary search	144,60	87
CP using linear search (UNSAT-SAT)	24,06	239
CP using linear search (SAT-UNSAT)	27,38	251
CP using binary search	73,19	241
CP using optimization statement	27,95	251
ASP Advanced incremental	41,84	79
SAT using incremental linear search (SAT-UNSAT)	66,27	45

Other Logic-Based Encodings

- Encoding developed with the language used by *MiniZinc* CP Solver.
- Input:
 - Dimension of the board;
 - List of robots;
 - Robots initial positions and goals;
 - List of barriers;
 - Number of time steps;
- Integer variables
 - Each position is represented by two integers
 - Column
 - Line

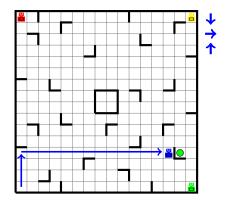
Other Logic-Based Encodings

Rules:

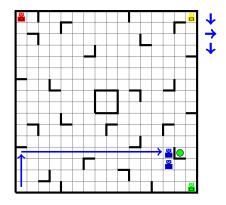
- The position of a robot at time step 0 must be the initial position of the robot;
- The position of a robot at the limit time step must be the goal position, if that robot has a goal;
- At most one robot moves at each time step;
- If a robot does not move then it stays in the same position;
- If a robot moves, it moves to a valid position;
 - A predicate valid_movement was created to guarantee the validity of a robot movement.
- If no robot moves in a given time step, then no robot moves in the next time step.

- Inspired in the ASP encodings.
- The main difference from proposed CP encoding is the movement constraints
 - Predicate valid_movement is dropped
 - No longer considering all the possible combinations.
 - Movement of the robot is inferred recursively.

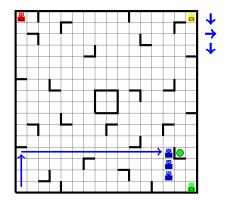
- Inspired in the ASP encodings.
- The main difference from proposed CP encoding is the movement constraints
 - Predicate valid_movement is dropped
 - No longer considering all the possible combinations.
 - Movement of the robot is inferred recursively.



- Inspired in the ASP encodings.
- The main difference from proposed CP encoding is the movement constraints
 - Predicate valid_movement is dropped
 - No longer considering all the possible combinations.
 - Movement of the robot is inferred recursively.



- Inspired in the ASP encodings.
- The main difference from proposed CP encoding is the movement constraints
 - Predicate valid_movement is dropped
 - No longer considering all the possible combinations.
 - Movement of the robot is inferred recursively.



- Inspired in the ASP encodings.
- The main difference from proposed CP encoding is the movement constraints
 - Predicate valid_movement is dropped
 - No longer considering all the possible combinations.
 - Movement of the robot is inferred recursively.

