
Logic-Based Encodings for Ricochet Robots

Filipe Gouveia, Pedro T. Monteiro, Vasco Manquinho, and Inês Lynce(B)

INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
{filipe.gouveia,pedro.tiago.monteiro,vasco.manquinho,

ines.lynce}@tecnico.ulisboa.pt

Abstract. Studying the performance of logic tools on solving a specific
problem can bring new insights on the use of different paradigms. This
paper provides an empirical evaluation of logic-based encodings for a
well known board game: Ricochet Robots. Ricochet Robots is a board
game where the goal is to find the smallest number of moves needed for
one robot to move from the initial position to a target position, while
taking into account the existing barriers and other robots. Finding a
solution to the Ricochet Robots problem is NP-hard. In this work we
develop logic-based encodings for the Ricochet Robots problem to feed
into Boolean Satisfiability (SAT) solvers. When appropriate, advanced
techniques are applied to further boost the performance of a solver. A
comparison between the performance of SAT solvers and an existing ASP
solution clearly shows that SAT is by far the more adequate technology
to solve the Ricochet Robots problem.

Keywords: Ricochet Robots · Encodings · Boolean Satisfiability ·
Answer Set Programming

1 Introduction

Puzzles play a key role in artificial intelligence. N-queens problem, towers of
Hanoi, Sudoku and Traveling Salesman Person (TSP) are only a few examples of
puzzles which are commonly used to motivate and illustrate the use of artificial
intelligence in problem solving [21]. Despite not being real problems, solving
such puzzles has represented a landmark in the history of artificial intelligence.
A recent example is the successful case of solving the GO game. Amazingly, some
years ago GO was mentioned in textbooks (e.g. [21]) as an example of a game
that was simple for humans and difficult for machines to solve.

Ricochet Robots is another example of such puzzles. Ricochet Robots is a
simple board game where the goal is to find the smallest number of moves for
a robot to move from its initial position to some target position on the board.
Allowed movements are peculiar in the sense that the robot has to be stopped
to stay at a given position. A robot movement is stopped either due to a barrier

This work was partially supported by national funds through Fundação para a
Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013.

c© Springer International Publishing AG 2017
E. Oliveira et al. (Eds.): EPIA 2017, LNAI 10423, pp. 657–669, 2017.
DOI: 10.1007/978-3-319-65340-2 54



658 F. Gouveia et al.

or due to another robot. What makes the Ricochet Robots game particularly
interesting is the fact that it is easy for a human expert to find a solution,
although it is very hard to find the best solution, i.e., the solution with as few
moves as possible [6]. Finding a solution is an NP-hard problem [10].

The main contribution of this work is a set of logic-based encodings for solv-
ing Ricochet Robots. The encodings were carefully designed to achieve a good
performance using logic tools, namely Boolean Satisfiability (SAT) tools. Spe-
cialized techniques have been used to further boost the efficiency of the solvers.
The developed encodings are compared against recent successful solutions [12,13]
encoding the problem into Answer Set Programming (ASP) [4]. Experimental
results are clear: SAT is more competitive than ASP in this context.

This paper is organized as follows. Section 2 introduces Ricochet Robots.
Logic-based encodings are described in Sect. 3. Experimental results are then
presented in Sect. 4. Section 5 discusses other logic-based encodings and Sect. 6
concludes the paper and mentions future work.

2 Ricochet Robots

The Ricochet Robots board game, also known as Rasende Roboter or Randolph’s
Robots, was designed by Alex Randolph in Germany in 1999 [6]. The success of
this game is testified by the possibility of playing Ricochet Robots online or even
on your mobile.

The original board game is played by two or more players on a 16 × 16 grid.
Each position of the board can have a barrier at the upper, bottom, left or right
border. The board is limited by barriers all around it, i.e., each position of the
top row has a barrier on the top border, and analogous for the bottom row,
and the leftmost and rightmost columns. In the original board game, the four
positions in the middle of the board are inaccessible and surrounded by barriers.
Figure 1 illustrates a Ricochet Robots board with some barriers placed and the
four positions in the middle surrounded by barriers, and therefore inaccessible.

In addition to the 16×16 grid board, the Ricochet Robots game is composed
by four robots of different colors. At the start of the game, the four robots are
placed randomly on the board, such that:

– each position cannot have more than one robot;
– there are no robots in the four middle (inaccessible) positions.

A target is also placed randomly on the board, except in any of the four
center positions. The color of the target corresponds to the color of one of the
robots.

The goal of the game is to move any number of robots, one at a time, so that
at the end the robot with the target color is on the target position. A player must
place the robot in the target position with as few moves as possible. The player
wins as many points as the number of moves used. Another target is randomly
selected and another round with other player begins. At the end of the game,
the player with fewest points wins.



Logic-Based Encodings for Ricochet Robots 659

The robots can move on the board with the following rules:

– A robot can move in any of the four directions (up, down, left, right);
– Once a robot moves, it only stops when it reaches: (i) a barrier or (ii) another

robot.

Take for example the board in Fig. 1. If the blue robot moves up, then it stops
in the position (12, 0) - row 12, column 0 - counting as a single move.

Fig. 1. 16 × 16 Ricochet Robots board. A solution is presented at the bottom. (Color
figure online)

Figure 1 illustrates the minimum number of moves so that the green robot
reaches the green target. In this case, 9 moves are required. Notice that in the
fourth movement (blue robot going right), the blue robot stops in the position
(15, 14) because the green robot in the position (15, 15) is blocking further
movements.

3 Encodings of the Ricochet Robots

We start with a base model for the Ricochet Robots problem, followed by the
description of a Boolean encoding for the problem.

3.1 Base Model

The Ricochet Robots board, described in Sect. 2, can be represented by a graph
where each board position is a vertex. Each two adjacent positions are connected



660 F. Gouveia et al.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) graph

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(b) graph with extended edges

Fig. 2. 4 × 4 board (Color figure online)

by an edge as long as there is no barrier between them. Figure 2a illustrates the
graph representation of a 4 × 4 board.

Remember that a robot moves in a given direction until it reaches a bar-
rier or another robot. The concept of extended edges is introduced taking this
information into account. For each position and for each direction (vertical and
horizontal), an edge to other positions in the same row or column is added if
and only if there is no barrier between the two positions.

Figure 2b presents the board graph from Fig. 2a where extended edges,
marked in dashed red, are added. For example, there is an extended edge con-
necting vertexes 1 and 3 (same row) since there are no barriers in the path
between them. However, there is no extended edge between vertexes 2 and 10
(same column) due to the existence of the barrier between vertexes 2 and 6.

3.2 Boolean Encoding

We assume that a problem is encoded using the conjunctive normal form (CNF).
A CNF formula is a conjunction (∧) of clauses, where a clause is a disjunction
(∨) of literals and a literal is a Boolean variable (positive literal) or its negation
(negative literal). A formula is said to be satisfied if all of its clauses are satis-
fied. A clause is satisfied if at least one of its literals is assigned value true. A
positive (negative) literal is assigned value true if the corresponding variable is
assigned value true (false); otherwise it is assigned value false (true). The
SAT problem is to decide whether there exists an assignment to the variables of
a CNF formula that satisfies the formula.

The proposed Boolean encoding for the Ricochet Robots problem follows
the SAT encoding for the Cooperative Path-Finding (CPF) problem [24]. The
CPF problem is very similar to the Ricochet Robots problem, differing only on
the rules of movement. In the Ricochet Robots problem each robot movement
corresponds to a displacement over one or more positions, only stopped either
by a barrier or another robot, whereas in the CPF problem each movement
corresponds to a move to an adjacent empty position.



Logic-Based Encodings for Ricochet Robots 661

Consider a d × d board and G = (V,E) the graph representing the board
where V = {v1, v2, . . . , vn} is the set of n = d × d vertexes and E is the set of
extended edges defined in Subsect. 3.1. In addition, consider R = {r1, r2, . . . , rμ}
the set of μ robots and η the number of time steps required to achieve the goal,
with μ, η ∈ N.

A Boolean encoding for the Ricochet Robots consists of the following propo-
sitional variables:

– Xt
j,k with 0 ≤ t ≤ η, 1 ≤ j ≤ n and 1 ≤ k ≤ μ. Xt

j,k is true if and only if
robot rk is in position vj at time step t.

– Posst
j,l for every 0 ≤ t ≤ η−1 and (vj , vl) ∈ E. Posst

j,l is true if it is possible
to move from vertex vj to vertex vl at time step t. A move is possible if the
path from vertex vj to vertex vl is clear, i.e. there are neither barriers nor
robots in the path between the two vertexes and the vertex vl is a limit when
coming from vertex vj , i.e., vl is proceeded by a barrier or another robot
considering the direction from vj to vl.

– M t
k with 0 ≤ t ≤ η − 1 and 1 ≤ k ≤ μ. M t

k is true if and only if robot rk

moved at time step t.

For the sake of clarity, in what follows the concepts of position in the board
and vertex in the graph are used indistinctly.

The encoding starts by encoding the facts representing the initial state of
the board. For each robot rk, a clause with one literal X0

j,k is added if the robot
is placed in vertex vj at the initial state. The goal state is also encoded with a
clause with one literal. The clause Xη

j,k is added if the goal is to have robot rk

in vertex vj .
The following clauses are also added to the CNF formula1:

– A robot is placed in exactly one vertex at each time step. This is encoded
with at least one and at most one constraints, respectively:
(a) A robot must be in one vertex at each time step

n∨

j=1

Xt
j,k (1)

for every time step 0 ≤ t ≤ η and for each robot rk, 1 ≤ k ≤ μ.
(b) A robot cannot be in two vertexes at the same time step

n∧

j=1

n∧

l=j+1

¬Xt
j,k ∨ ¬Xt

l,k (2)

for every time step 0 ≤ t ≤ η and for each robot rk, 1 ≤ k ≤ μ.

1 For the sake of clarity, some of the clauses are not written in CNF. In any case, the
translation to CNF is trivial.



662 F. Gouveia et al.

– A robot either stays in the same vertex vl or comes from a vertex vj , such
that (vj , vl) ∈ E, from which a movement is possible

Xt+1
l,k =⇒ Xt

l,k ∨
∨

(Xt
j,k ∧ Posst

j,l ∧ M t
k) (3)

for every time step 0 ≤ t ≤ η − 1, for each robot rk, 1 ≤ k ≤ μ, for every edge
(vj , vl) ∈ E.

– Given an edge (vj , vl) ∈ E, a path between vertexes vj and vl is clear if
and only if there are no robots in any of the vertexes comprised between the
source vertex vj and the destination vertex vl.

Posst
j,l =⇒

∧

h∈p(j,l)

μ∧

k=1

¬Xt
h,k (4)

for every time step 0 ≤ t ≤ η − 1 and for every edge (vj , vl) ∈ E. Remember
that p(j, l) denotes the set of vertexes in the path from vj and vl.

– A vertex is a stop vertex for a given direction if there is a robot in the following
vertex

Posst
j,l =⇒

μ∨

k=1

Xt
m,k (5)

for every time step 0 ≤ t ≤ η−1 and for each (vj , vl) ∈ E, where vm represents
the next vertex adjacent to vl considering the direction from vj to vl.

– Only one robot can move at each time step

μ∧

k=1

μ∧

h=k+1

¬M t
k ∨ ¬M t

h (6)

for every time step 0 ≤ t ≤ η − 1;

Constraint (5) is only applied if the target position of the movement is not a
natural stop vertex, i.e., if it is not a vertex followed by either a barrier or the
end of the board.

Observe that (2) and (6) specify at most one constraints on robot locations
or movements. In this paper, the pairwise encoding is used for encoding at most
one cardinality constraints, since the board dimensions are small. Nevertheless,
other encodings [1,7,11,16,17,20] could also be used.

The goal of the Ricochet Robots problem is to move a given robot from its
initial position to the target position with the minimum number of moves.

The encoding proposed allows to check if a solution exists for a given time
step limit. However, it is possible to obtain an optimal solution for this problem
using this encoding following an iterative approach.

Iterative Approach. This approach consists in iteratively using a SAT solver
to solve successive instances limited to a given time step η. One possible strategy



Logic-Based Encodings for Ricochet Robots 663

is to start by considering η = 0, and whenever the resulting instance is unsat-
isfiable, increase η by 1. This process is repeated until a satisfiable instance is
found. The solution to the satisfiable instance is clearly an optimal solution of
the problem. Observe that this strategy follows an UNSAT-SAT linear search
on the value of the optimal solution.

It is known that most of the optimum solutions for the Ricochet Robots prob-
lem, from the benchmark used by Gebser et al. [12], have at most 20 time steps.
Hence, a different strategy to solve the problem is to first encode an instance
considering η = 20 (or another large value where a solution is conceivably to be
found). In this case, whenever the generated encoding is satisfiable, η is decreased
by 1. The process is repeated until an unsatisfiable instance is found, thus prov-
ing that the last satisfiable solution is also an optimal solution to the problem.
This strategy follows a SAT-UNSAT linear search on the value of the optimal
solution.

If an initial upper bound can be defined, another iterative strategy would be
to use a binary search, considering 0 time steps as a lower bound and 20 (or
another conceivable value) as an upper bound. In this case, we can first consider
η = 10. If the instance is satisfiable, then 10 is the new upper bound and update
η to 5. Otherwise, if the instance is unsatisfiable, then 11 is the new lower bound
and update η to 15. The binary search continues by updating η to the average
value between the lower and upper bound. The optimal solution has been found
when the lower bound is equal to the upper bound.

It might occur that the initial value for the upper bound in the binary search
or the linear SAT-UNSAT might not result in a satisfiable instance. In this case,
one can define a new upper bound (e.g. considering 20 more steps) and apply
the same strategy.

4 Experimental Evaluation

In this section, we compare the proposed SAT encoding with the Advanced ASP
encoding described in [12]2.

The experimental evaluation was performed using the 256 benchmark
instances used by Gebser et al. [12]. These benchmarks are based on an authen-
tic 16 × 16 Ricochet Robots board. In the initial state of the board, each of
the four robots is placed on one of the four corners. The instances of the prob-
lem were generated by placing the target on each of the 256 possible positions.
The target is to be reached always by the same robot. The experiments were
run on a Linux machine with Intel Xeon CPU E5-2630 v2 2.60 GHz processors,
considering a time limit of 600 s.

We consider the optimization problem of finding the optimum solution for a
Ricochet Robots problem instance. For the ASP encoding, gringo 3.0.5 [15] was
used as the grounder and clasp 3.1.4 [14] was used as the ASP solver3. For the
2 This encoding is available from https://potassco.org/doc/apps/2016/09/20/

ricochet-robots.html. Note that the more recent encoding described in [13] is not
publicly available.

3 http://potassco.sourceforge.net/.

https://potassco.org/doc/apps/2016/09/20/ricochet-robots.html
https://potassco.org/doc/apps/2016/09/20/ricochet-robots.html
http://potassco.sourceforge.net/


664 F. Gouveia et al.

incremental approach of the ASP encoding we used iclingo 3.0.5. For the SAT
encoding, glucose 4.0 4 [3] was used.

For the optimization problem, the iterative algorithms described in Sect. 3.2
were implemented on top of the glucose 4.0 SAT solver. Moreover, for each of the
three iterative approaches (linear SAT-UNSAT, linear UNSAT-SAT and binary
search), we considered both non-incremental and incremental implementations.

In the non-incremental implementations, the SAT solver is rebuilt at each
iteration of the algorithm. On the other hand, in the incremental implementa-
tions the SAT solver is never rebuilt from scratch at each SAT call, thus allowing
to reuse the learned clauses and other information from previous iterations. This
can be achieved by using an assumption-based approach [2,9] that has proved
to be effective in several domains [18,22,23].

In incremental implementations, a SAT formula φ is built considering an
initial limit of ν time steps. In our case, we considered ν = 20. Next, depending
on the iterative algorithm being used, for each SAT call on φ, a set of assumption
literals is defined such that it limits the allowed number of time steps for that
specific call. If the number of allowed time steps is η for a board with μ robots,
then literals ¬M t

k (with η ≤ t ≤ ν − 1 and 1 ≤ k ≤ μ) are added as assumptions
to the SAT solver call on φ. Observe that assumption literals are not unit clauses.
Hence, at each SAT call we are only testing if φ can be satisfied by assuming
that no robot can move beyond η time steps. As a result, the working formula
of the optimization algorithm does not have to be rebuilt between iterations.

Table 1 shows the average run time for the solved optimization problem
instances, as well as the number of timeouts considering a time limit of 600 s.
First, results clearly show that SAT-based approaches outperform the ASP
encodings for the tested instances of the Ricochet Robot problem, since all SAT
encodings are able to optimally solve a larger set of instances. Moreover, the
incremental algorithms also outperform the non-incremental, on both the num-
ber of solved instances and the average time spent on solving each instance.

Table 1. Average time (in seconds) of solved optimization instances.

Time (s) #Timeouts

ASP advanced optimization 59,34 81

ASP advanced incremental 41,84 79

SAT using binary search 108,37 51

SAT using incremental binary search 56,79 50

SAT using incremental linear search (UNSAT-SAT) 57,43 54

SAT using incremental linear search (SAT-UNSAT) 66,27 45

Figure 3 sheds more light on the data given in Table 1. For each one of the
different approaches, represented by a different line, the CPU times used for
4 http://www.labri.fr/perso/lsimon/glucose/.

http://www.labri.fr/perso/lsimon/glucose/


Logic-Based Encodings for Ricochet Robots 665

Fig. 3. Time comparison (in seconds) between ASP Advanced encodings and SAT
encoding for optimization instances.

solving each of the problem instances are sorted and plotted in the graph. At the
end, one has a clear picture of how many instances are solved by each approach
for a given CPU time limit. Not only the SAT-based encoding is more effective,
but also the incremental approaches are able to solve a larger number of problem
instances. Observe that the non-incremental SAT-based binary search algorithm
has a more significant overhead, but it is still a more robust approach than using
ASP encodings.

Finally, it was observed that the binary search algorithm performs fewer SAT
calls than the linear SAT-UNSAT algorithm. However, the time spent in each
SAT call was larger. This might result from the fact that, in two consecutive iter-
ations of the binary search algorithm, the set of assumptions has more changes
since the time step limit can vary (increase or decrease) more than 1. Hence, the
reuse of the previous SAT call context does not seem to be as useful in a binary
search approach as when performing a linear SAT-UNSAT algorithm.

5 Other Logic-Based Encodings

The success of using SAT and ASP for solving the Ricochet Robots problem sug-
gests the use of other logic-based tools as the next natural step. We have explored
the use of Satisfiability Modulo Theories (SMT) and Constraint Programming
(CP) for solving this problem. However, experimental results show that all of
these encodings perform worse than ASP and SAT encodings in terms of CPU
time. One can argue that these encodings can still be improved, but enough time
has been invested for one to say that there should not be a straightforward SMT
or CP encoding performing better than SAT or ASP encodings.



666 F. Gouveia et al.

The SMT encoding developed for solving the Ricochet Robots problem cor-
responds to the implementation of the SAT encoding. Other SMT encodings
have been tried, but at the end the SAT-like encoding was the best performing
encoding. The experiments were run using z3 4.5 5 [8] as the SMT solver. Incre-
mental implementations of the Boolean encoding presented were also developed
on top of the z3 SMT solver, similarly to the SAT approaches. Experimental
results have shown that the SMT approaches solve fewer instances than the cor-
responding ASP (and SAT) approaches, and also have greater average times for
solved instances.

The proposed CP encoding for solving the Ricochet Robots problem considers
the CP language used by MiniZinc [19]. Experiments were run using MiniZinc
2.1.0 6 [19] with the Gecode solver provided. Experimental results have shown
that the CP approaches solve 4 to 5 times fewer instances than the SAT and ASP
approaches. These results are consistent with the results obtained by Barták et
al. [5] on a problem with similarities to the Ricochet Robots problem. The results
show that CP solves far less instances than SAT, despite the instances solved by
CP requiring less CPU time. In what follows, the CP encoding is described with
more detail.

The CP encoding builds upon a set of integer variables. The input consists
of the dimension of the board, the list of robots, the robots initial positions
and goals, the list of barriers of the board and the number of time steps. The
positions of the board are represented by 2 integers, one representing the line and
another representing the column of the board. For each position, four variables
are defined, with either value 1 or 0, representing the barriers. The four variables
represent the north, south, east, and west directions and have value 1 if the
position has a barrier in the corresponding direction and 0 otherwise.

Besides the variables that define the problem instance and, are therefore given
as input, two sets of variables are also defined in order to have a solution for
the problem. These variables are called decision variables. For each robot and
for each time step, two variables with integer values are defined, representing
the position of each robot at each time step. Similarly to the previous encoding
presented, for each robot, and for each time step, a variable with value 0 or 1
is defined representing if either the robot is moving (1) or not (0) in that time
step. The constraints of the problem encoding in CSP are:

– The position of a robot at time step 0 must be the initial position of the
robot;

– The position of a robot at the limit time step must be the goal position, if
that robot has a goal;

– At most one robot moves at each time step;
– If a robot does not move then it stays in the same position;
– If a robot moves, it moves to a valid position;
– If no robot moves in a given time step, then no robot moves in the next time

step.
5 https://github.com/Z3Prover/z3.
6 http://www.minizinc.org/index.html.

https://github.com/Z3Prover/z3
http://www.minizinc.org/index.html


Logic-Based Encodings for Ricochet Robots 667

Similarly to CP encoding of a similar problem [5] we found convenient to use
an auxiliary predicate, valid movement, to define if a robot moves to a valid
position. The predicate valid movement is defined according to the rules of the
game, i.e., it is a valid movement if the following rules are satisfied:

– The robot moves to a position on the same row or column;
– There are no robots nor barriers in the path between the initial position and

the target position of the movement;
– There is a barrier on the target position considering the direction of the

movement or there is a robot in the next position of the target position
considering the direction of the movement.

Finally, iterative implementations were developed for the linear searches and
binary search on top of the CP encoding. Moreover, the minimization native
approach was considered in the experiments.

6 Conclusions and Future Work

Puzzles are common challenges in AI. Apart from their recreational interest,
puzzles provide a testbed for the use and comparison of different techniques
in problem solving. In this paper, new logic-based encodings for the Ricochet
Robots problem are proposed. These encodings are given to SAT solvers using
different algorithmic implementations such as binary search, linear search and
incrementality. The new proposed encodings allowed to solve a larger set of
problem instances than the previously proposed ASP encodings.

Despite clear improvements on previously proposed encodings, the use of a
MaxSAT approach is yet to be fully explored, as well as the use of planning
tools. Another direction will consider extending the current encodings (and the
lessons learned from its development) to similar problems.

References

1. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables into
problems with Boolean variables. In: International Conference on Theory and
Applications of Satisfiability Testing, pp. 1–15 (2004)

2. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39071-5 23

3. Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers. In:
Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 197–205. Springer, Cham
(2014). doi:10.1007/978-3-319-09284-3 15

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

5. Barták, R., Dovier, A., Zhou, N.F.: Multiple-origin-multiple-destination path find-
ing with minimal arc usage: complexity and models. In: International Conference
on Tools with Artificial Intelligence (ICTAI), pp. 91–97. IEEE (2016)

http://dx.doi.org/10.1007/978-3-642-39071-5_23
http://dx.doi.org/10.1007/978-3-319-09284-3_15


668 F. Gouveia et al.

6. Butko, N., Lehmann, K.A., Ramenzoni, V.: Ricochet robots-a case study for human
complex problem solving. Project thesis from the Complex System Summer School,
Santa Fe Institute (2006)

7. Chen, J.: A new SAT encoding of the at-most-one constraint. In: International
Workshop on Modelling and Reformulating Constraint Satisfaction Problems
(2010)

8. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24605-3 37

10. Engels, B., Kamphans, T.: Randolphs robot game is NP-hard!. Electron. Notes
Discret. Math. 25, 49–53 (2006)

11. Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.: Solving non-Boolean
satisfiability problems with stochastic local search: a comparison of encodings. J.
Autom. Reason. 35(1–3), 143–179 (2005)

12. Gebser, M., Jost, H., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.,
Schneider, M.: Ricochet robots: a transverse ASP benchmark. In: Cabalar,
P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 348–360. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40564-8 35

13. Gebser, M., Kaminski, R., Obermeier, P., Schaub, T.: Ricochet Robots reloaded:
a case-study in multi-shot ASP solving. In: Eiter, T., Strass, H., Truszczyński, M.,
Woltran, S. (eds.) Advances in Knowledge Representation, Logic Programming,
and Abstract Argumentation. LNCS, vol. 9060, pp. 17–32. Springer, Cham (2015).
doi:10.1007/978-3-319-14726-0 2

14. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR
2007. LNCS, vol. 4483, pp. 260–265. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72200-7 23

15. Gebser, M., Schaub, T., Thiele, S.: GrinGo: a new grounder for answer set pro-
gramming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol.
4483, pp. 266–271. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72200-7 24

16. Gent, I.P., Nightingale, P.: A new encoding of All different into SAT. In: Interna-
tional Workshop on Modelling and Reformulating Constraint Satisfaction Problems
(2004)

17. Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from N objects. In:
International Workshop on Constraints in Formal Verification (2007)

18. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-
straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–
548. Springer, Cham (2014). doi:10.1007/978-3-319-10428-7 39

19. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

20. Prestwich, S.: Variable dependency in local search: prevention is better than cure.
In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 107–
120. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0 14

21. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach, 3rd edn.
Pearson Education, London (2010)

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-642-40564-8_35
http://dx.doi.org/10.1007/978-3-319-14726-0_2
http://dx.doi.org/10.1007/978-3-540-72200-7_23
http://dx.doi.org/10.1007/978-3-540-72200-7_23
http://dx.doi.org/10.1007/978-3-540-72200-7_24
http://dx.doi.org/10.1007/978-3-319-10428-7_39
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-72788-0_14


Logic-Based Encodings for Ricochet Robots 669

22. Sharma, A., Sharma, D.: An incremental approach to solving dynamic constraint
satisfaction problems. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP
2012. LNCS, vol. 7665, pp. 445–455. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34487-9 54

23. Shtrichman, O.: Pruning techniques for the SAT-based bounded model checking
problem. In: Margaria, T., Melham, T. (eds.) CHARME 2001. LNCS, vol. 2144,
pp. 58–70. Springer, Heidelberg (2001). doi:10.1007/3-540-44798-9 4

24. Surynek, P.: Simple direct propositional encoding of cooperative path finding
simplified yet more. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.)
MICAI 2014. LNCS, vol. 8857, pp. 410–425. Springer, Cham (2014). doi:10.1007/
978-3-319-13650-9 36

http://dx.doi.org/10.1007/978-3-642-34487-9_54
http://dx.doi.org/10.1007/978-3-642-34487-9_54
http://dx.doi.org/10.1007/3-540-44798-9_4
http://dx.doi.org/10.1007/978-3-319-13650-9_36
http://dx.doi.org/10.1007/978-3-319-13650-9_36

	Logic-Based Encodings for Ricochet Robots
	1 Introduction
	2 Ricochet Robots
	3 Encodings of the Ricochet Robots
	3.1 Base Model
	3.2 Boolean Encoding

	4 Experimental Evaluation
	5 Other Logic-Based Encodings
	6 Conclusions and Future Work
	References




